Tutorial on:

Practical Use of SDR for Machine Learning in RF Environments

Contributors:

Neel Pandeya

National Instruments

Tathagata Mukherjee

Assistant Professor University of Alabama Huntsville https://www.cs.uah.edu/~tm0130/

Debashri Roy

Associate Research Scientist Northeastern University http://www1.coe.neu.edu/~droy/

Outline

Part1: Neel (90 mins)

Introduction to signal processing concepts for SDR, USRP radio hardware architecture, UHD device driver and UHD API, and GNU Radio
Configuration of the USRP Radio
Demos and examples of various SDR systems

Part2: Tathagata (30 mins)

Introduction to ML Concepts
Discussion of FM radio-based positioning using SDR
Direction Finding using SDR
Introduction to Adversarial Learning

Part3: Debashri (45 mins)

•RF ML Problems and Challenges
•Introduction to the Transmitter Identification problem
•Example of Transmitter Identification using Python Jupyter notebook

Q&A: 15 mins

Outline

Part1: Neel (90 mins)

Introduction to signal processing concepts for SDR, USRP radio hardware architecture, UHD device driver and UHD API, and GNU Radio
Configuration of the USRP Radio
Demos and examples of various SDR systems

Part2: Tathagata (30 mins)

Introduction to ML Concepts
Discussion of FM radio-based positioning using SDR
Direction Finding using SDR
Introduction to Adversarial Learning

Part3: Debashri (45 mins)

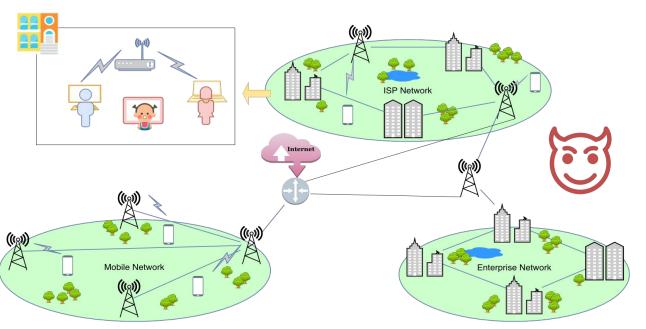
•RF ML Problems and Challenges
•Introduction to the Transmitter Identification problem
•Example of Transmitter Identification using Python Jupyter notebook

Q&A: 15 mins

Wireless Networks: Current Scenario

- Omnipresent
- Backbone of modern world wireless communication
- Still evolving
- Secure communication

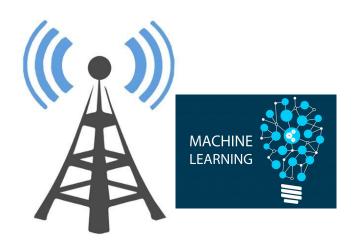
- Signal **fading** due to multi-path propagation
- **Shadowing** due to manmade and natural objects
- Interference



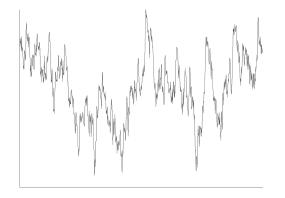
- Reliability and Quality:
 - Ensuring both is **challenging**
- Security:
 - Real-time communication
 - Cryptography techniques could be overhead.
 - Way out???

Learn about the Environment and Automate Security Machine Learning

Use of AI in RF Domain



Ever-changing RF Channel



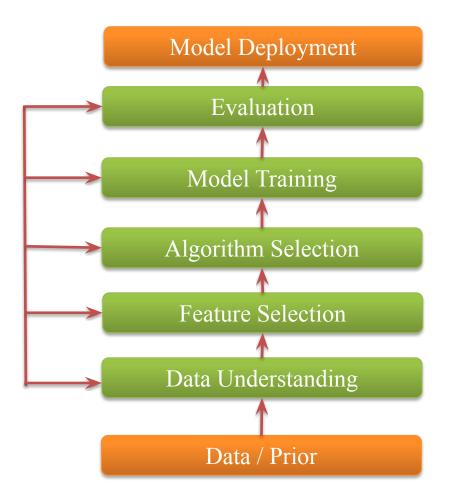
Traditional ML

¹ Images from Google

Radio Frequency Machine Learning

17 April 2022

Machine Learning Life Cycle

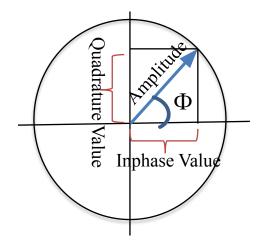


Do not code the pattern, let the machine learn through the data...

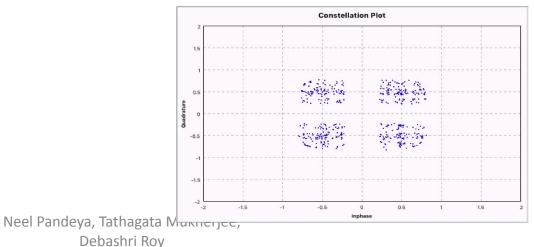
17	April	2022
----	-------	------

I/Q Representation of RF Signal Data

- V(t) = A * sin (2 * π * f * t + Φ) where: A: peak amplitude
 - f: frequency
 - t: time
 - Φ : phase shift

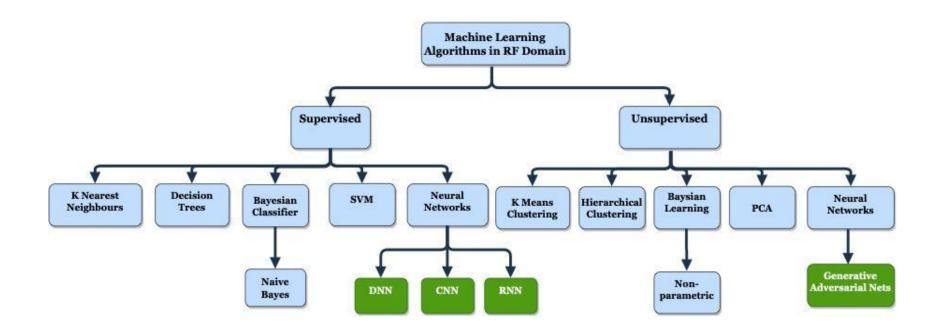


- These amplitude and phase changes is to **encode** information upon a sine wave □ **Modulation**
- Modulated Carrier RF = $I \cdot \cos 2\pi ft + Q \cdot \sin 2\pi ft$



7

Machine Learning in RF Domain



Applicability of different ML Algorithms greatly depends on Data. Existing Datasets: Synthetic and Real

Collected Data: Multi dimensional and large

*radioML, "RFML 2016," https://github.com/radioML/dataset, 2018.

17 April 2022

Radio Frequency Adversarial Learning (RFAL) Framework

Problems

Solutions

Interfere or hack into the existing transmissions

Pose as an authentic transmitter
Fake transmitter Design a ML based framework to detect such adversaries Design a robust transmitter

Design a robust transmitter fingerprinting approach

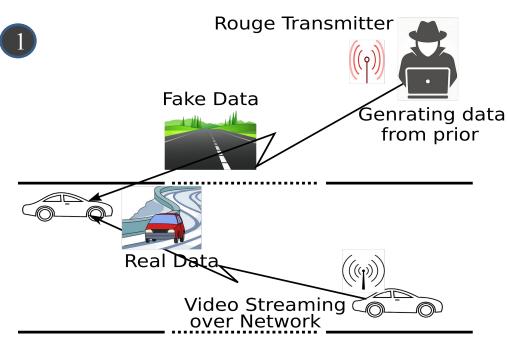
Papers

[1] Debashri Roy, Tathagata Mukherjee, Mainak Chatterjee, Eduardo Pasiliao, *Detection of Rogue RF Transmitters using Generative Adversarial Nets*, IEEE Wireless Communications and Networking Conference (WCNC), 2019.

[2] Debashri Roy, Tathagata Mukherjee, Mainak Chatterjee, Erik Blasch, Eduardo Pasiliao, *RFAL: Adversarial Learning for RF Transmitter Identification and Classification*, In IEEE Transactions on Cognitive Communications and Networking, 2020.

[3] Debashri Roy, Tathagata Mukherjee, Mainak Chatterjee, Eduardo Pasiliao, *RF Transmitter Fingerprinting Exploiting Spatio-temporal Properties in Raw Signal Data.*, IEEE International Conference on Machine Learning and Applications (ICMLA), 2019.

Detection of Adversaries and Transmitter Fingerprinting



Learn, characterize, and determine such rouge transmitters by proposing and implementing Generative Adversarial Networks (GAN) based learning techniques for RFML systems.

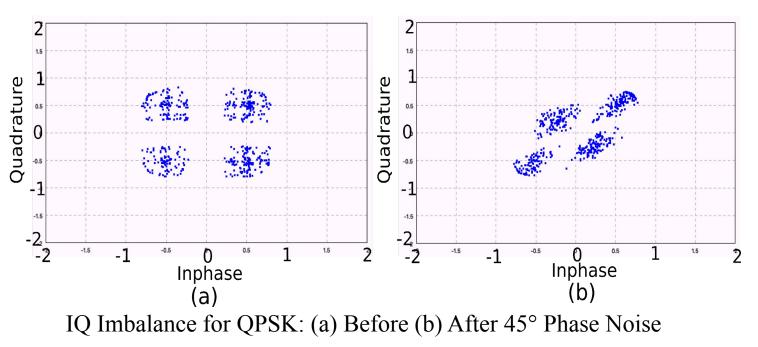
□ Radio Frequency Adversarial Learning (**RFAL**) Framework

Transmitter Fingerprinting:

- Exploit intrinsic properties in RF data
- Exploit **spatial** or **temporal correlations** in the transmitted RF data.

Feature Selection: Inherent Noise

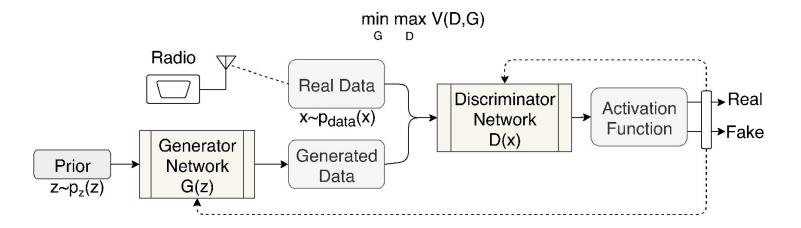
- Inherent noise imposed by radio hardware⁴:
 - Noisy mixers
 - Noisy oscillators
 - Imbalanced low pass filters
- Unique to each hardware



 ⁴M. D. L. Angrisani *et al.,* "Clustering-based method for detecting and evaluating I/Q impairments in radio-frequency digital transmitters," IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 6, pp. 2139–2146, 2007. Neel Pandeya, Tathagata Mukherjee,
 17 April 2022

Generative Adversarial Nets

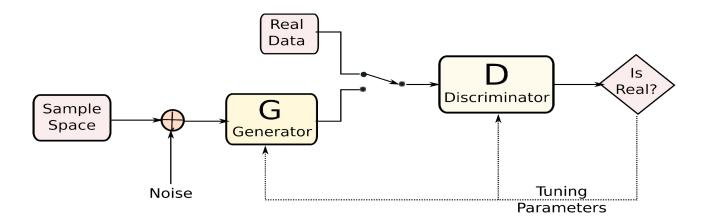
- Generator (*G*): generates the "fake" data and learns about real data distribution over time.
- **Discriminator** (*D*): tries to distinguish "fake" data from "real" data by estimating the probability that the sample came from real data rather than *G*.



 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_{z}(x)} [\log (1 - D(G(z)))]$

Proposed GAN Model

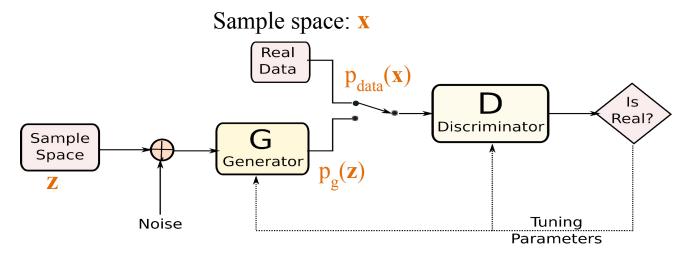
- Identifying fake transmitters from trusted ones.
- Some RF properties to consider:
 - Signal Phase
 - Signal Amplitude
 - Modulation Schemes
 - Sample Space I/Q Data



Proposed GAN Architecture

Proposed Generative Model

- Goal: to generate fake I/Q data by learning sample space of real data.
- Priors: a sample space of I/Q data



- $p_{g}(z)$ is the generator's distribution over z.
- $p_{data}(\mathbf{x})$ is the data distribution over **x**.

Objective: To learn the probability distribution $p_{g}(z)$ over sample space (z).

Proposed Discriminative Model

• Goal: Maximize the cost function:

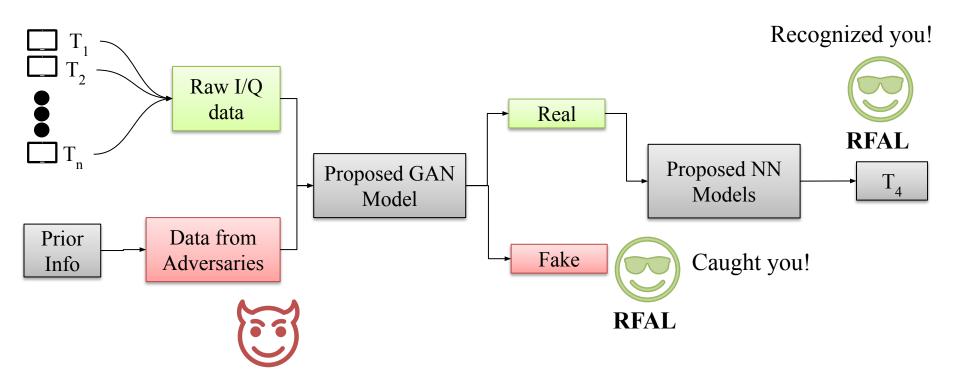
$$C(D,G) = \mathbb{E}_{y \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{x \sim p_g(z)}[\log(1 - D(G(x)))]$$

- D(x) is the probability that x came from $p_{data}(x)$ than $p_g(z)$.
- The GAN training: $min_G max_D C(D, G)$
- One unique optimal discriminator per GAN framework: $p_{data}(x)$

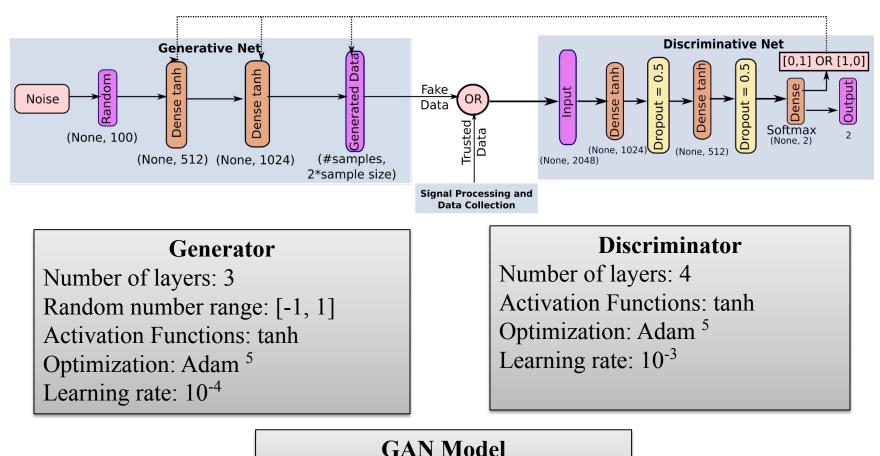
$$D^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(z)}$$

• Optimal generator when $p_g(z) = p_{data}(x)$.

RFAL Architecture



Proposed GAN Model

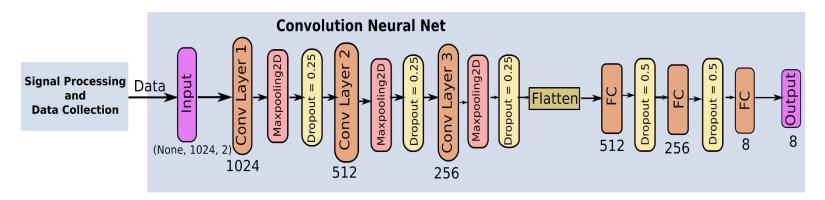


Number of epochs: 200 Training: Categorical cross entropy

⁵D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," CoRR, vol. abs/1412.6980, 2014. Neel Pandeya, Tathagata Mukherjee,

Debashri Roy

Proposed NN Models

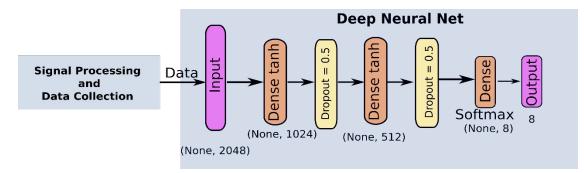


Convolutional Neural Network

Number of layers: 6 Activation Functions: ReLU Kernel Size: (2, 3) Conv stride: (2, 2) Optimization: Adam ⁵ Learning rate: 10⁻³ Pool size: (2, 2) Pool stride: (2, 2) Training: Categorical cross entropy

⁵D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," CoRR, vol. abs/1412.6980, 2014.

Proposed NN Models

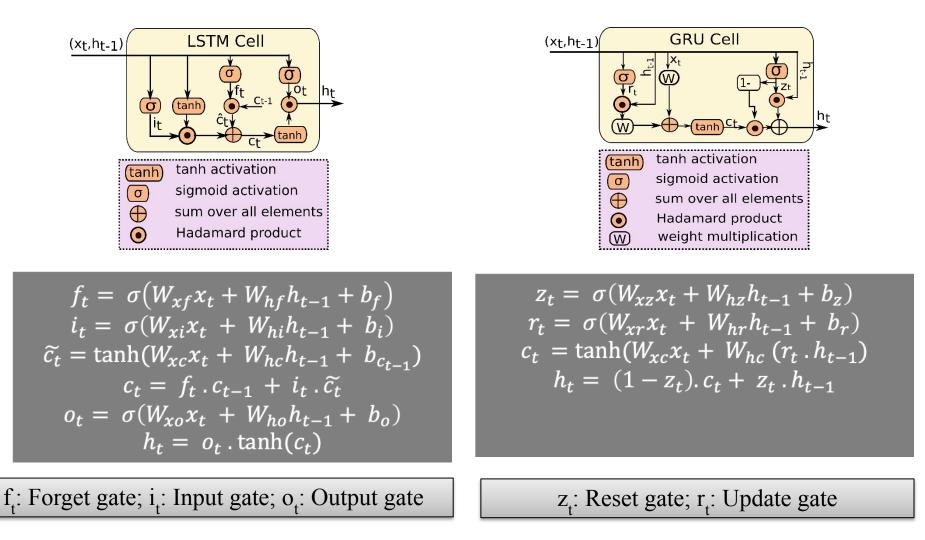


Deep Neural Network

Number of layers: 4 Activation Functions: tanh Optimization: Adam ⁵ Learning rate: 10⁻³ Training: Categorical cross entropy

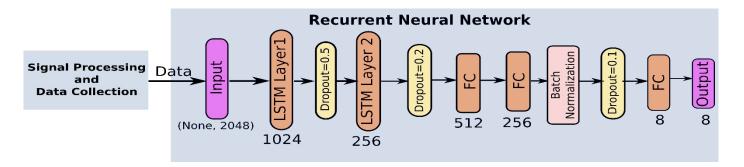
⁵D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," CoRR, vol. abs/1412.6980, 2014.

Proposed NN Models: RNN



c_t: Cell state; W: Weights; b: Biases

Proposed NN Models: RNN



Recurrent Neural Network with LSTM Cells

Activation Functions:

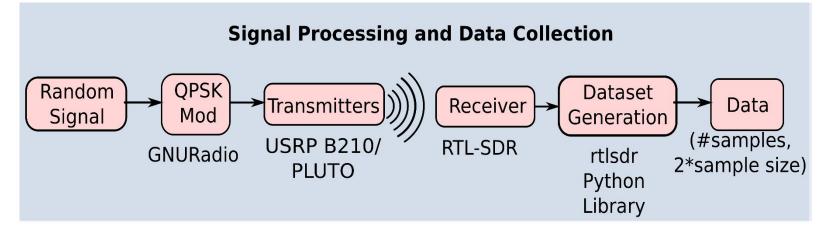
- ReLU for LSTM layers
- tanh for dense (Fully Connected) layers
- Optimization: Stochastic gradient descent

Learning rate: 10⁻³

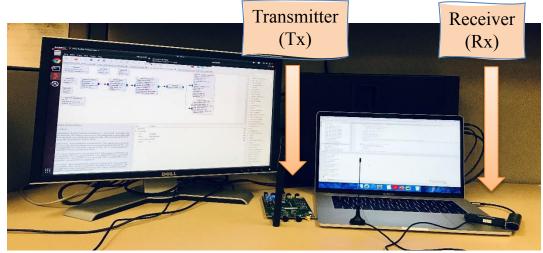
Training: Categorical cross entropy

We design another RNN model with GRU Layers with same configuration

Signal Generation



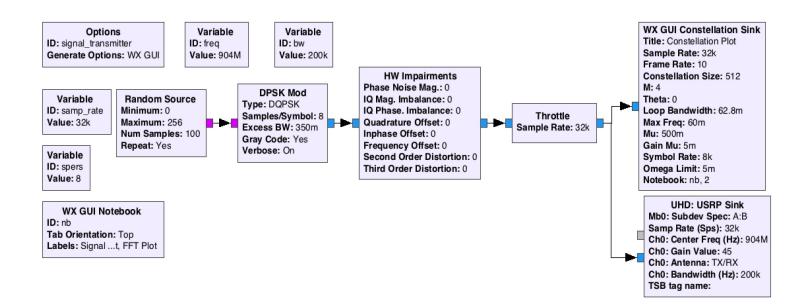
Signal Generation and Data Collection Technique



Data Collection

Transmitter (USRP B210):

- Frequency Range: 70 MHz 6 GHz
- Used Frequency: 904 MHz (ISM)
- Gain: 45 dB
- Total transmitters: 4 * 2

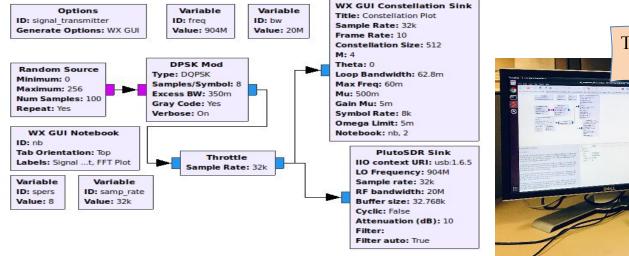


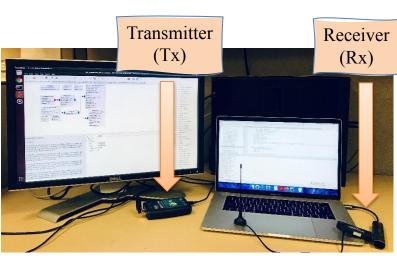
⁶http://www.ettus.com/all-products/UB210-KIT/ 17 April 2022 Neel Pandeya, Tathagata Mukherjee, Debashri Roy

Data Collection

Transmitter (PADALM-PLUTO):

- Frequency Range: 325 MHz 3.8 GHz
- Used Frequency: 904 MHz (ISM)
- Gain: 45 dB
- Total transmitters: 1





⁷https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/a dalm-pluto.html#eb-overview

17 April 2022

Data Collection

Receiver

- Frequency Range: 500 kHz 1766 MHz
- Used Frequency: 904 MHz
- Sample Rate: 1024

Io	Qo	11023	Q1023
I _O	Qo	l1023	Q1023
Ι _ο	Q0	I1023	Q1023

Collected Data

- Raw I/Q Signal Data: Sample size 1024
- Homogeneous Dataset (SNR 30dB):
 - 6.8 GB: Using 4 USRP SDRs, 160,000 rows and 2048 columns.
 - 13.45 GB: Using 8 USRP SDRs, 320,000 rows and 2048 columns.
- Heterogeneous Dataset (SNR 30dB):
 - 2.86 GB: Using 1 PLUTO-SDR and 1 USRP SDR, 80,000 rows and 2048 columns
- Varying SNR:
 - ~13 GB: 3 more datasets with 8 USRP SDRs for SNR 20dB, 10dB, and 0 dB, 320,000 rows and 2048 columns.

Neel Pandeya, Tathagata Mukherjee,

Experimental Setup

- Data collection on 16 GB Intel machine.
- A Ryzen 8 Core system with 64 GB RAM, a GTX 1080 Ti GPU unit, and 11 GB memory.
- Python Libraries: *tensorflow*, *keras*, *numpy*, *scipy*, and *matplotlib*

Correlation in Dataset

Representation of collected data:

$$x_t = [[(I,Q)_i]^t], t = 1, 2, ..., M; t = 1, 2, ..., T] \in C^M$$

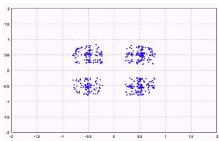
T: number of training samples; M: Sample size; t: timestamp; $(I, Q) \in C$ is number in the complex plane

$$[I_0 Q_0 I_1 Q_1 I_2 Q_2 I_3 Q_3 \dots I_{1023} Q_{1023}]^t$$

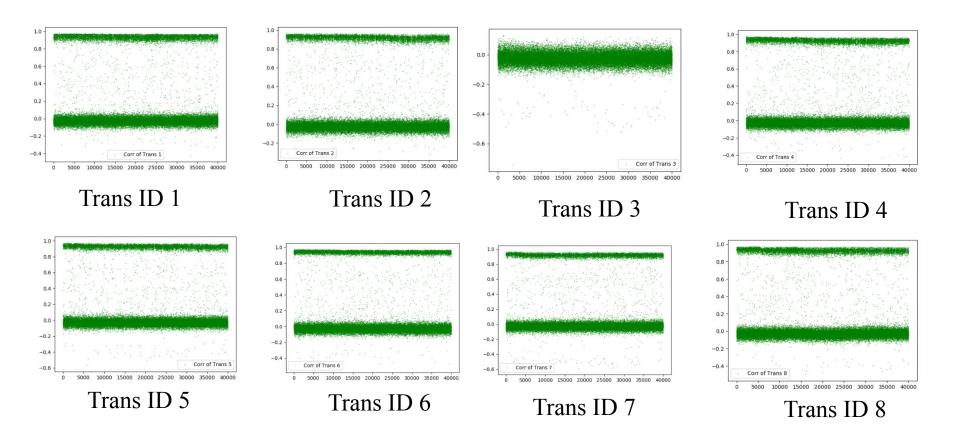
Q: How to measure correlation in such dataset?

Ans: Remember, QPSK modulation, $(I_0I_1I_2I_3, I_4I_5I_6I_7)$, and $(Q_0Q_1Q_2Q_3, Q_4Q_5Q_6Q_7)$ Correlation using Pearson's method $(r) = \frac{\sum_{i=0}^{(M-1)}(I_i-\overline{I})(Q_i-\overline{Q})}{\sqrt{\sum_{i=1}^{(M-1)}(I_i-\overline{I})^2}\sqrt{\sum_{i=0}^{(M-1)}(Q_i-\overline{Q})^2}}$

$$\bar{I} = \frac{1}{M} \sum_{i=0}^{(M-1)} I_i$$



Correlation in Dataset



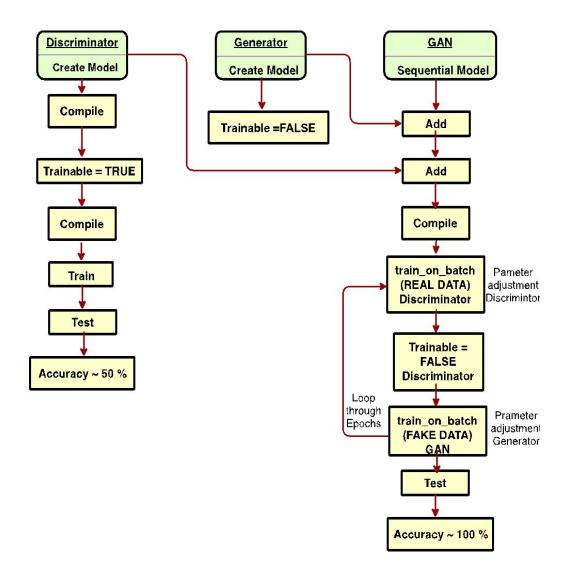
- 75% of samples' correlation coefficients fall between -0.1 and 0.1, and 25% close to 0.9.
- For transmitter ID 3, all samples' correlation coefficients fall between -0.1 and 0.1.

Poor Spatial Correlation

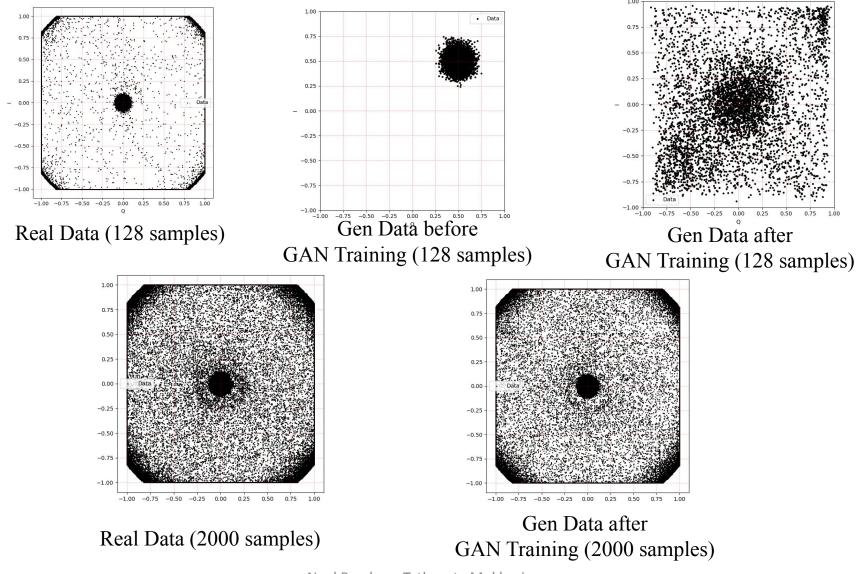
Implementation

- Our objective was to design:
 - a generative adversarial net (GAN) to distinguish rogue transmitters from trusted ones.
 - a convolutional neural network (CNN) to exploit the correlation in collected signal data of the trusted transmitters.
 - a deep neural network (DNN) to classify the trusted transmitters for fingerprinting.
 - a recurrent neural networks (RNNs) to improve classification accuracy exploiting the property of **time-series** data.

Experimental Analysis: GAN



Experimental Results: Generator



Neel Pandeya, Tathagata Mukherjee,

Debashri Roy

Experimental Results: Identification

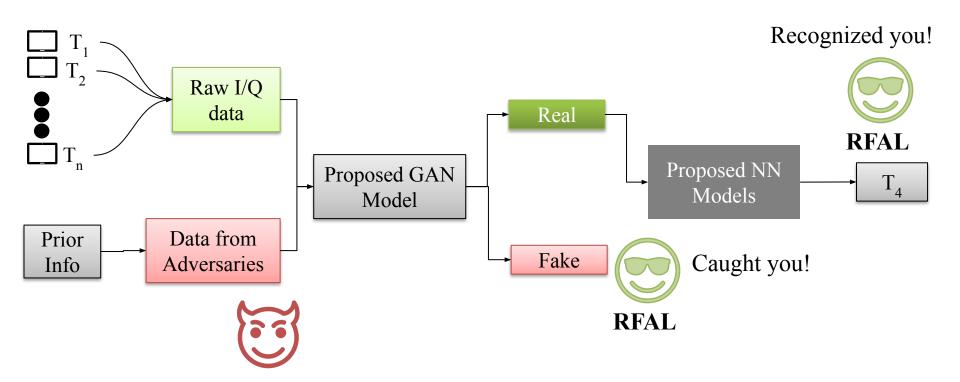
Dataset (GB)	#Trans	Method	#Parameters	Accuracy (%)
			3.6 M (G)	
6.8	4	GAN (DNN)	6.8 M (D)	99.9
			10.4 M (GAN)	
		GAN (DNN)	3.6 M (G)	
13.45	8		6.8 M (D)	99.9
			10.4 M (GAN)	

Neel Pandeya, Tath

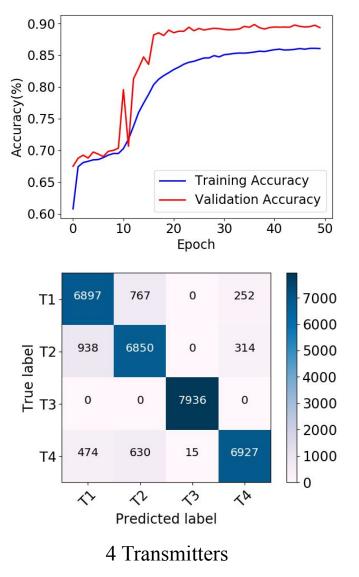
Confusion Matrix for Identification:

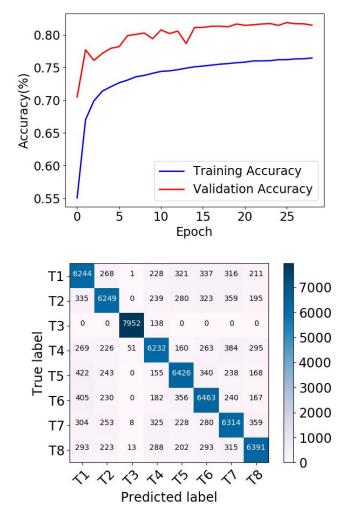


RFAL Architecture



Experimental Results: CNN





8 Transmitters

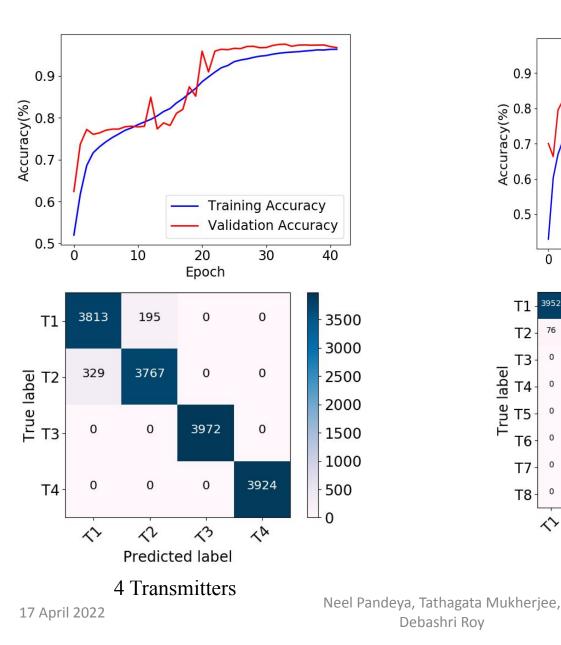
17 April 2022

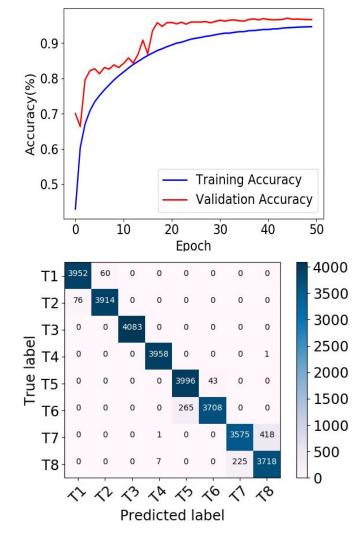
Neel Pandeya, Tathagata Mukherjee,

Debashri Roy

Experimental Results: DNN

Debashri Roy

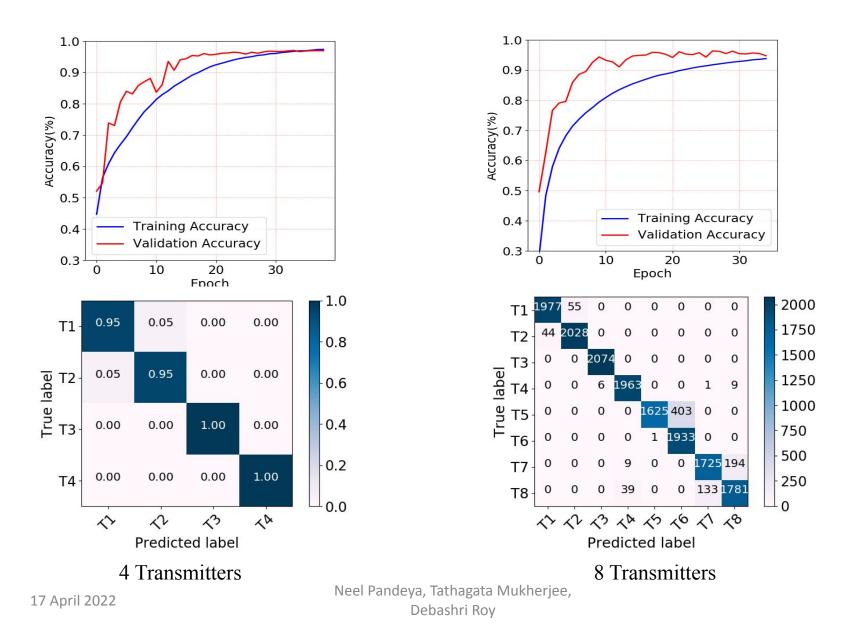




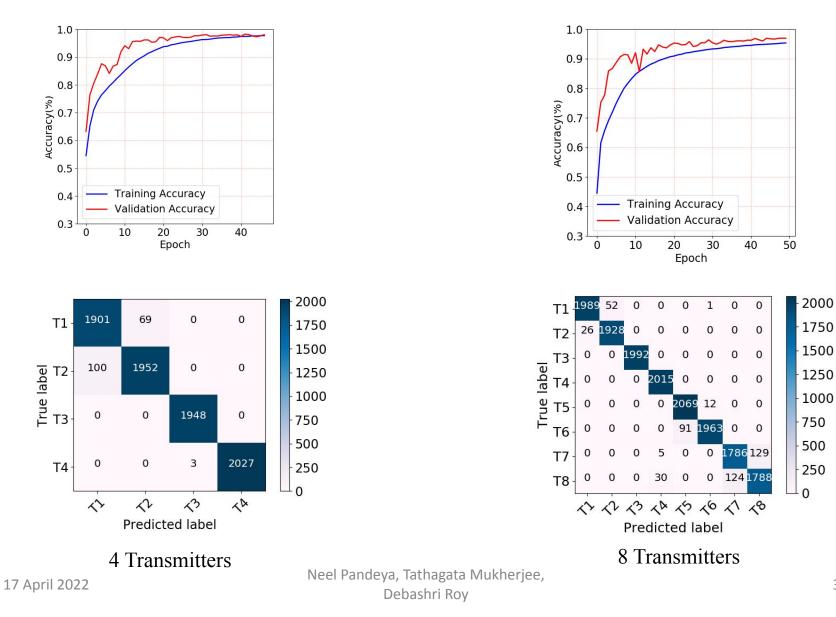
8 Transmitters

35

Experimental Results: RNN (LSTM)

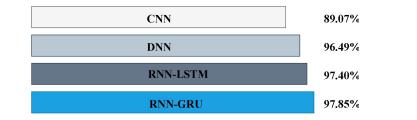


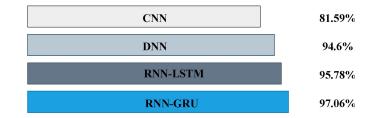
Experimental Results: RNN (GRU)



Experimental Results: Classification

Dataset (GB)	#Trans	Method	#Parameters	Accuracy (%)
6.8	4	DNN (4 layers)	6.8 M	97.21
13.45	8	DNN (4 layers)	6.8 M	96.60
6.8	4	CNN (6 layers)	38 M	89.07
13.45	8	CNN (6 layers)	38 M	81.59
6.8	4	RNN-LSTM (6 layers)	14.2 M	97.40
13.45	8	RNN-LSTM (6 layers)	14.2 M	95.78
6.8	4	RNN-GRU (6 layers)	10.7 M	97.85
13.45	8	RNN-GRU (6 layers)	10.7 M	97.06





4 Transmitters

8 Transmitters

Neel Pandeya, Tathagata Mukherjee,

Debashri Roy

Experimental Results: Heterogeneous Data

Models	USRP-USRP	PLUTO-USRP
CNN	89.91%	99.91%
DNN	99.9%	100%
RNN	99.95%	100%

Training and Testing Accuracies with increasing number of Transmitters

Experimental Results: Varying SNR

SNR (dB)	Accuracy (%)					
	CNN DNN RNN (GRU)					
0	51.53	85.12	92.3			
10	78.64	92.24	95.64			
20	81.3	94.60	97.02			
30	81.59	94.60	97.06			

Accuracies for Different Neural Network Models with Varying SNR

- Better accuracy for all models with higher SNR.
- RNN (GRU) gives 92% accuracy at 0 dB SNR too.

Performance Analysis

Approach	#Trans	SNR (dB)	Acc (%)	Inputs
Genetic Algorithm [1]	5	25	85-98	Transients
Multifractal Segmentation [2]	8	Not Mentioned	92.5	Transients
Orthogonal Component Reconstruction (OCR) [3]	3	20	62-71	Spurious Modulation
K-NN [4]	8	30	97	Transients
RNN [5]	-	20	90	Synthetic Dataset
RFAL (RNN)	8	30	97.04	Raw I/Q Data

Comparison of **RFAL** Implementation with the **Traditional** Ones

- Existing methods used some extracted features as input.
- Some works are tested on synthetic datasets only.
- [1] J. Toonstra et al., "A radio transmitter fingerprinting system ODO-1", CCECE, 1996.
- [2] D. Shaw et al., "Multifractal Modelling of Radio Transmitter Transients for Classification," IEEE WESCANEX, 1997.
- [3] S. Xu et al., "Individual Radio Transmitter Identification based on Spurious Modulation Characteristics of Signal Envelop," IEEE MILCOM, 2008.
- [4] I. Kennedy et al. "Radio Transmitter Fingerprinting: A Steady State Frequency Domain Approach", IEEE VTC, 2008.
- [5] S. Rajendran et al., "Deep Learning Models for Wireless Signal Classification With Distributed Low-Cost Spectrum Sensors, IEEE TCCN, 2018.

Neel Pandeya, Tathagata Mukherjee,

Performance Analysis

Approach	#Trans	SNR (dB)	Acc (%)	Inputs
CNN [6]	7	30	91.38	Preprocessed data from MATLAB
CNN [7]	5	50	98	Preprocessed data from MATLAB
CNN [8]	-	-	99.67	ACARS data
DNN [9]	12	-	84.4	Raw Signal
Inception ResNet [10]	-	-	98.1 & 96.3	ACARS & ADS-B
CNN [11]	16	30	99.5	Demodulated symbols
CNN [12]	21	-	99.99	FIT/CorteXlab
RFAL (RNN)	8	30	97.04	Raw I/Q Data

Comparison of **RFAL** Implementation with the **State-of-the-art**

• Existing methods used some processed data as input.

• Some works are tested on existing datasets only.

[6] K. Merchant et al. "Deep learning for RF device fingerprinting in cognitive communication networks", IEEE JSTSP, 2018.

[7] S. Riyaz et al. "Deep Learning Convolutional Neural Networks for Radio Identification", IEEE Com. Mag., 2018.

[8] S. Zheng *et al.* "Big Data Processing Architecture for Radio Signals Empowered by Deep Learning: Concept, Experiment, Applications and Challenges", IEEE Access, 2018.

[9] K. Youssef et al. "Machine Learning Approach to RF Transmitter Identification", IEEE RFID, 2018.

[10] S. Chen et al. "Deep learning for large-scale real-world ACARS and ADS-B radio signal classification", CoRR, 2019.

[11] K. Sankhe et al. "ORACLE: Optimized Radio clAssification through Convolutional neuraL nEtworks", IEEE INFOCOM, 2019.

[12] C. Morin et al. "Transmitter Classification With Supervised Deep Learning", CoRR, 2019.

Neel Pandeya, Tathagata Mukherjee,

Experimental Setup: Configurations

Models	#Layers	Learning Rate	Batch Size	Epochs	Optimizers
CNN	7	10-4	128	45-50	Adam
DNN	5	10-3	128	35-40	Adam
RNN-LSTM	6	10-3	128	30-35	SGD
RNN-GRU	6	10 ⁻³	128	30-35	SGD

Comparison for Configuration Settings for Different Models

- Different models have different hyper-parameter values.
- Maximum **50** epochs with **early stopping** of patience **5**.

Next: A fingerprinting demo of the small dataset (2 radios) in jupyter notebook

Outline

Part1: Neel (90 mins)

Introduction to signal processing concepts for SDR, USRP radio hardware architecture, UHD device driver and UHD API, and GNU Radio
Configuration of the USRP Radio
Demos and examples of various SDR systems

Part2: Tathagata (40 mins)

Discussion of FM radio-based positioning using SDR
Introduction to ML Concepts
Introduction to Adversarial Learning

Part3: Debashri (35 mins)

•RF ML Problems and Challenges
•Introduction to the Transmitter Identification problem
•Example of Transmitter Identification using Python Jupyter notebook

Q&A: 15 mins