
1

Tutorial: Practical Use of SDR for
Machine Learning in RF Environments

ACM-SE 2022

Neel Pandeya
National Instruments
Austin, Texas, USA

neel.pandeya@ni.com
neel.pandeya@ettus.com

2022-04-18
12:30 – 15:30 (Central Time)

Agenda

2

● Introduction to SDR concepts, architecture, applications
● Overview of USRP B200, B210, B200mini
● Overview of SDR toolchains
● Overview of Radio Transport Protocols and Wireshark
● Overview of I/Q Data Rates and Sampling Rates
● Introduction to UHD

○ Building, installing, and configuring UHD on Linux
○ Various UHD Utility Programs
○ Using the UHD API from C++ and Python
○ Packet Flow Errors

● Introduction to GNU Radio
○ Building, installing, and configuring GNU Radio on Linux
○ Various GNU Radio Utility Programs
○ Using GRC, and creating and running flowgraphs
○ Examples with DTMF, filters, etc.

● Record & Playback of Signals
○ I/Q data formats, Digital RF, SigMF

● Introduction to GQRX
○ Building, installing, and configuring GQRX on Linux
○ Spectrum monitoring
○ Demo of gr-paint

● Implementing an FM receiver and transmitter in GNU Radio and gr-rds
● Technical Resources, Getting Help & Technical Support, Upcoming Events

- A radio in which some or all of the physical-layer functions are implemented in
software running on a microprocessor (CPU) and/or on an FPGA

- Physical-layer algorithms from DSP and communications theory run as
real-time software on a CPU and/or FPGA

- Software can run on an embedded DSP chip (e.g., Analog Devices
TigerSHARC, Texas Instruments C6400) or a general-purpose CPU (e.g.,
Intel x86, ARM Cortex-M)

- Joe Mitola first coined the term “SDR” in an IEEE paper 1991

What is Software-Defined Radio (SDR)

3

- Most radios use the classic superheterodyne receiver architecture

- The RF signal from the antenna is mixed with a local oscillator to produce an intermediate
frequency (IF) signal

- The IF signal is a fixed lower-frequency signal, which is then filtered and further mixed
(downconverted) to baseband

SDR Architecture

4

- Most SDR uses a direct-conversion receiver (DCR) architecture

- Also called Zero-IF receiver, and homodyne receiver

- Eliminates the intermediate frequency (IF) by translating the band of interest directly to
baseband

- The frequency of the LO is set to the same frequency as the transmitted/desired RF signal

SDR Architecture

5

- Quadrature Sampling and I/Q Data
- “I” is the in-phase (not shifted) data component

- “Q” is the quadrature-phase (shifted by 90 degrees) data component

- Why do we use I/Q Data?

- To fully determine the frequency and phase of a signal, and to be able to distinguish between
positive and negative frequencies (needed for digitally processing the signal)

- Why 90 degrees?

- So that the two components are orthogonal, meaning that their correlation is zero, further
meaning that if the cosine signal is multiplied with the sine signal, and then the summation of
the result is taken, this sum will be zero (the integral of the product of the sine and the cosine
is zero).

- A change in one component does not affect the other component

SDR Architecture

6

- Nyquist-Shannon Sampling Theorem
- fs > 2 * fmax

- You must sample at least at twice the bandwidth of the signal,
at least at twice the highest frequency component

- If the sampling rate is lower than twice the bandwidth of the signal, then there will be aliasing,
and information will be lost (the signal will likely be “damaged”)

- Due to the quadrature sampling used in the USRP devices, the sampling rate can be equal to
the signal bandwidth

- Often, wireless standards will prescribe or require specific sampling rates, above the minimum
sampling rate required

SDR Architecture

7

- Fast Fourier Transform (FFT)

- An FFT is an algorithm that computes the Discrete Fourier Transform (DFT) of a signal, or its
inverse (IDFT)

- Fourier analysis converts a signal from the “time domain” to a representation in the frequency
domain, and vice-versa

- When we plot the FFT of a signal on a graph, it shows the spectrum of a signal, which is a plot
of all the sine waves and cosine waves that constitute a signal, and this is called the spectrum
of the signal

- The sine waves and cosine waves are the fundamental building blocks of the signal (i.e., all
signals can be constructed using sine waves and cosine waves), and the FFT plot is a
visualization of those constituent and specific sine waves and cosine waves, at specific
frequencies and at specific magnitudes

SDR Architecture

8

- Decibel (dB)
- dB is a relative unit of measurement that expresses the ratio of two values on a logarithmic scale
- dB is a relative value of power, not an absolute value of power, so it is dimensionless
- RatiodB = 10 * log10(Pmeasured / Preference)
- When something doubles, it changes by +3 dB
- When something halves, it changes by -3 dB
- When something increases by a factor of ten, it changes by +10 dB
- When something decreases by a factor of ten, it changes by -10 dB
- When something increases by a factor of one hundred, it changes by +20 dB
- 0 dB is equal to the reference value (i.e., 0 dBm is equal to one mW of power)
- dBm is power with respect to 1 mW, so it is an absolute value of power, with units of mW
- Why do we use dB?

- Logarithmic scales are useful for measuring values that have a very large ranges of values
- Used to measure sound level, earthquake intensity (Richter Scale), etc.

SDR Architecture

9

USRP Architecture

10

USRP Architecture

11

- Traditional radios are hard-wired to specific frequency bands and
communication protocols

- Fixed-function, Black Box

- Can’t be easily modified, can’t easily access internal values and states

- SDR provides:

- Flexibility

- Upgradability

- Reconfigurability

- Lower Cost

Why Use SDR?

12

- Voice-band Soft-modems / WinModems in 1990s and 2000s

- Cellular handsets (baseband processors such as Qualcomm Snapdragon, MediaTek, etc.)

- Cellular 4G/LTE and 5G/NR basestations (Eurecom OpenAirInterface (OAI), SRS srsRAN, Amarisoft)

- Cellular protocol stack emulation (2G/GSM, 3G/WCDMA, 4G/LTE, 5G/NR)

- GPS Receivers and Simulators

- Adaptive Radio and Cognitive Radio

- Satellite Communications (Ground Stations)

- Wireless Security Research

- Spectrum Monitoring

- Waveform Prototyping

- Wireless Systems Testing / Wireless Testbeds

Applications of SDR

13

- Radio Astronomy

- Drone Communications, Drone Detection, Drone Defense

- Direction Finding / Angle-of-Arrival

- Phased Arrays, Beam-forming and Beam-steering, MIMO Systems

AI and ML have a role in all of these applications spaces!

- Processing can be either real-time or off-line / post-processing

- C++ and Python with the the USRP Hardware Driver (UHD) API (open-source)

- GNU Radio (Python, NumPy, SciPy, Matplotlib, etc.) (open-source)

- LabVIEWTM (National Instruments)

- MATLABTM and SimulinkTM (The MathWorks)

- Application-Specific:

- Cellular: Eurecom OpenAirInterface (OAI), SRS srsRAN, Amarisoft

- GPS: GNSS-SDR, GPS-SDR-Sim, Skydel Solutions SDX

- Spectrum Monitoring: Fosphor, SDR++, GQRX

- Amateur Radio: HDSDR, SDR#, SDR-Console

Software Toolchains for SDR & USRP

14

- About Ettus Research:
- Founded in 2004 by Matt Ettus

- Acquired by National Instruments in 2010

- Offices in Santa Clara, California, USA; Austin, Texas, USA; Dresden, Germany

- “USRP” is an acronym for Universal Software Radio Peripheral

- USRP Device Families:

- B-series (B200, B210, B200mini): USB 3.0 host interface

- N-series (N200, N210, N300/N310, N320/N321): 1 Gbps Ethernet host interface

- X-series (X300, X310, X410): 1, 10, 100 Gbps Ethernet host interface

- E-series (E310, E312, E313, E320): Embedded stand-alone SDR with ARM CPU

USRP Background

15

USRP B200

16

- Xilinx Spartan 6 XC6SLX75 FPGA

- Analog Devices AD9364 RFIC direct-conversion transceiver

- Frequency range: 70 MHz to 6 GHz

- Up to 56 MHz of instantaneous bandwidth

- Maximum sampling rate of 61.44 Msps

- 1 Tx channel & 1 Rx channel

- USB 3.0 connectivity

- Optional GPSDO module

USRP B210

17

- Xilinx Spartan 6 XC6SLX150 FPGA

- Analog Devices AD9361 RFIC direct-conversion transceiver

- Frequency range: 70 MHz to 6 GHz

- Up to 56 MHz of instantaneous bandwidth

- Maximum sampling rate of 61.44 Msps

- 2 Tx channels & 2 Rx channels

- USB 3.0 connectivity

- Optional GPSDO module

USRP B200mini

18

- Xilinx Spartan-6 XC6SLX75 FPGA

- Analog Devices AD9364 RFIC direct-conversion transceiver

- Frequency range: 70 MHz to 6 GHz

- Up to 56 MHz of instantaneous bandwidth

- Maximum sampling rate of 61.44 Msps

- 1 Tx channel & 1 Rx channel

- USB 3.0 connectivity

- Powered from the USB 3.0 bus

- Size of a business card or credit card

- Integer decimation of the Master Clock Rate (MCR)

- Even decimation rate preferred

- Odd decimation rate allowed but with warning of CIC filter roll-off attenuation

- For B200, B210, B200mini:

- All based on AD9361

- MCR can be anything between 1 MHz and 61.44 MHz (30.76 MHz in 2x2)

- Decimation rates between 1 and 1024

Sampling Rates

19

- On the USRP B200, B210, B200mini, the I/Q data samples can be:

- 16-bit I, 16-bit Q, for a total of 4 bytes per complex sample

- 12-bit I, 12-bit Q, for a total of 3 bytes per complex sample

- The ADC & DAC on the AD9361 are 12 bits anyway, so no loss of data or dynamic range

- USB 2.0 is 480 Mbits/s (60 MB/s) theoretical, so ~35 MB/s practical throughput, or ~8 Msps

- USB 3.0 is 5 Gbits/s (625 MB/s) theoretical, so ~350 MB/s practical throughput, or ~80 Msps

- 1 GbE is 1000 Mbits/sec (125 MB/sec) theoretical, so ~25 Msps, practical throughput

- 10 GbE is 10000 Mbits/sec (1250 MB/sec) theoretical, so ~250 Msps practical throughput

- Consider the load of the I/Q data rate on the transport, the CPU, and the disk

- Example: LTE signal, 20 MHz channel bandwidth

- 30.72 Msps sampling rate, per 3GPP specifications

- At 4 bytes per complex sample, the data rate is 122.88 Mbytes/s

I/Q Data Rates

20

- Provides a single, common interface (API) for all USRP devices

- Host-side software driver running in user-space

- Open-source and hosted on GitHub

- Cross-platform (Windows, macOS, Linux)

- Four components: host-side software; FPGA; MPM; firmware

- https://github.com/EttusResearch

USRP Hardware Driver (UHD)

21

USRP Hardware Driver (UHD)

22

Application

LabVIEW C++ GNU Radio
Python / GRC / C++ Matlab

UHD Driver

Windows macOS Linux Embedded Linux

Hardware
Motherboard (FPGA)

Daughterboard
Antenna

UHD Version Numbering

23

- UHD and GNU Radio use a modified semantic version numbering (major.API.ABI.patch)

- MAJOR version as necessitated by product generation & architecture

- API version, incremented when incompatible API changes are made

- ABI version, incremented when incompatible ABI changes are made

- PATCH version, incremented when backwards-compatible bug fixes are made

- The API number changes whenever there is any change to the API

- The ABI pertains to how external applications communicate with (link to) the UHD library

- The patch number is incremented when patches are made, typically for bug fixes

Radio Transport Protocols

24

Radio transport protocols are used to exchange I/Q samples (or other items) between
host computer and USRP devices over Ethernet and USB

The USRP B200, B210, B200mini use the CHDR (compressed header) protocol, which is
based on VITA-49.2

It is pronounced like the cheese "cheddar"

I/Q data traffic can be used in Wireshark, and there is a dissector for CHDR packets

Radio Transport Protocols

25

The CHDR packet:

Radio Transport Protocols

26

The 64 bits in the compressed header have the following meaning:

Radio Transport Protocols

27

The packet type is determined mainly by the first two bits, although the EOB or error flag
are also taken into consideration:

Viewing I/Q Traffic (CHDR) in Wireshark

28

Viewing I/Q Traffic (CHDR) in Wireshark

29

Viewing I/Q Traffic (CHDR) in Wireshark

30

Viewing I/Q Traffic (CHDR) in Wireshark

31

Viewing I/Q Traffic (CHDR) in Wireshark

32

The UHD Repository on GitHub

33

host/
This folder contains the source code for the host-side driver

firmware/
This folder contains the source code for all microcontrollers in USRP hardware

fpga/
This folder contains the source code and build scripts for the USRP FPGAs

mpm/
This folder contains the source code for the Module Peripheral Manager (MPM) for embedded USRP devices

images/
This folder contains tools for downloading the USRP FPGA images, which are located in the
/usr/local/share/uhd/images folder by default

tools/
This folder contains additional tools and utility programs

1. sudo apt-get install libboost-all-dev libusb-1.0-0-dev python-mako doxygen

python-docutils cmake build-essential libncurses5 libncurses5-dev

2. mkdir ~/workarea; cd ~/workarea

3. git clone git://github.com/EttusResearch/uhd.git

4. cd uhd/

5. git checkout v4.1.0.5

6. cd host/

7. mkdir build && cd build

8. cmake ../

9. make -j4

10. make test

11. sudo make install

12. sudo ldconfig

Installing UHD from Source Code

34

- Binary packages available on Ubuntu Launchpad PPA

- Recommend building from source code

- Much more flexible when doing development

- The binary packages are less flexible and are often older or out-of-date

- Use when doing deployment

Installing UHD from Binary Package

35

- Add this line to your $HOME/.bashrc file, and source it, or logout and log back in:

export LD_LIBRARY_PATH=/usr/local/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

- On Linux, udev handles USB plug and unplug events. The following commands install a udev rule so that non-root

users may access the device. Without this, you will not see the radio as a normal user. This step is only necessary

for devices that use USB to connect to the host computer, such as the B200, B210, and B200mini.

cd <path-to-uhd-repository>/uhd/host/utils

sudo cp uhd-usrp.rules /etc/udev/rules.d/

sudo udevadm control --reload-rules

sudo udevadm trigger

- For USRP devices that use Ethernet to connect to the host computer, such as the N200, N210, X300, X310, set the

IP address of your system to 192.168.10.1, with a netmask of 255.255.255.0. The default IP address of the USRP is

192.168.10.2 (for 1 GbE), and 192.168.40.2 (for 10 GbE), with a netmask of 255.255.255.0.

- Use Network Manager GUI (in Unity, KDE, GNOME, Xfce, etc.) to set the IP address. If you set the IP address from

the command line with ifconfig, then Network Manager may probably overwrite this.

Post-Installation Steps

36

UHD Utility - uhd_images_downloader

37

sudo /usr/local/lib/uhd/utils/uhd_images_downloader.py

UHD Utility - uhd_images_downloader

38

UHD Utility - uhd_find_devices

39

Uses broadcast packets for device discovery.
Often blocked by routers, switches, firewalls.

View firewall settings with:
sudo iptables -L

UHD Utility - uhd_usrp_probe

40

41

Most UHD applications and examples make use of the --args parameter to select specific devices

Common argument keys: serial, addr, resource, name, type, vid/pid.

$ uhd_find_devices --args “addr=192.168.10.2” (for USRP N2xx / X3xx)

$ uhd_find_devices --args “type=b200,serial=xxxxxxx” (for B2xx)

Note that multiple arguments are comma-delimited

This will return the devices at the specific IP
address, and can be used to overcome previously
mentioned network obstacles.

UHD Arguments

UHD Example Programs

42

rx_ascii_art_dft --freq 98e6 --rate 1e6 --gain 20 --ref-lvl -50

Verifying USRP using UHD

43

benchmark_rate --rx_rate 10e6 --tx_rate 10e6

Verifying USRP using UHD

44

rx_samples_to_file --freq 98e6 --gain 20 --rate 1e6 usrp_samples.dat

Verifying USRP using UHD

45

tx_samples_from_file --freq 915e6 --rate 1e6 --gain 0 usrp_samples.dat

- Default installation location is /usr/local/lib/uhd/utils

- uhd_config_info

- Prints detailed UHD configuration information

- uhd_images_downloader

- Downloads FPGA images for the current UHD version

- uhd_image_loader

- Writes an FPGA image into the flash memory for the X300/X310 FPGA

- usrp_burn_mb_eeprom

- Reading and writing motherboard EEPROM

- usrp_burn_db_eeprom

- Reading and writing daughterboard EEPROM

UHD Utility Programs

46

UHD Example Programs

47

- rx_ascii_art_dft
- Creates ASCII/Ncurses FFT
- ./rx_ascii_art_dft --freq 98e6 --rate 5e6 --gain 20 --bw 5e6 --ref-lvl -50

- rx_samples_to_file
- Saves samples to file
- ./rx_samples_to_file --freq 98e6 --rate 5e6 --gain 20 usrp_samples.dat

- tx_samples_from_file
- Transmits samples from file
- ./tx_samples_from_file --freq 915e6 --rate 5e6 --gain 10 usrp_samples.dat

- benchmark_rate
- Benchmarks interface with device
- ./benchmark_rate --rx_rate 10e6 --tx_rate 10e6

- tx_waveforms
- Transmits specific waveform
- ./tx_waveforms --freq 915e6 --rate 5e6 --gain 0

- Default installation location is /usr/local/lib/uhd/examples

- Packet flow errors printed in console/terminal as upper-case letters:

- Underrun on Tx (“U”):

- Samples not being produced by the host application fast enough. CPU governor or other power management not configured correctly.

- Overrun on Rx (“O”):

- Samples not being consumed by the host application fast enough. CPU governor or other power management not configured correctly.

- Sequence Error on Tx (“S”):

- Network hardware failure. Check host NIC, cable, switch, etc. Frame size might not work with the current NIC's MTU.

- Dropped Packet on Rx (“D”):

- Network hardware failure. Check host NIC, cable, switch, etc. PCIe bus on host cannot sustain throughput. CPU governor or other

power management not configured correctly. Frame size might not work with the current NIC's MTU. Check "ethtool -S

<interface>".

- Late Packet on Tx (“L”):

- Samples are not being produced by user's application fast enough. CPU governor or other power management not configured correctly.

Incorrect/invalid time_spec provided. Usually on MIMO.

Packet Flow Errors

48

Using UHD API

49

- The UHD API can be used from:

- C++ (native)

- Python 3

- For C++, can compile with:

- GCC

- LLVM/Clang

- Microsoft Visual Studio

- macOS Xcode

- Uses the CMake build system

- An example CMakeLists.txt file provided for getting started with building custom stand-alone applications

Using UHD API from C++

50

#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/exception.hpp>
#include <uhd/types/tune_request.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/thread.hpp>
#include <iostream>

int UHD_SAFE_MAIN(int argc, char *argv[]) {

...

 return EXIT_SUCCESS;
}

Using UHD API from C++

51

int UHD_SAFE_MAIN(int argc, char *argv[]) {
 uhd::set_thread_priority_safe();

 std::string device_args("type=b200");
 std::string subdev("A:0");
 std::string ant("TX/RX");
 std::string ref("internal");

 double rate(1e6);
 double freq(915e6);
 double gain(10);

 //create a usrp device
 std::cout << std::endl;
 std::cout << boost::format("Creating the usrp device with: %s...") % device_args << std::endl;
 uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(device_args);

 // Lock mboard clocks
 std::cout << boost::format("Lock mboard clocks: %f") % ref << std::endl;
 usrp->set_clock_source(ref);

Using UHD API from C++

52

 //always select the subdevice first, the channel mapping affects the other settings
 std::cout << boost::format("subdev set to: %f") % subdev << std::endl;
 usrp->set_rx_subdev_spec(subdev);
 std::cout << boost::format("Using Device: %s") % usrp->get_pp_string() << std::endl;

 //set the sample rate
 if (rate <= 0.0) {
 std::cerr << "Please specify a valid sample rate" << std::endl;
 return ~0;
 }

 // set sample rate
 std::cout << boost::format("Setting RX Rate: %f Msps...") % (rate / 1e6) << std::endl;
 usrp->set_rx_rate(rate);
 std::cout << boost::format("Actual RX Rate: %f Msps...") % (usrp->get_rx_rate() / 1e6) << std::endl << std::endl;

 // set freq
 std::cout << boost::format("Setting RX Freq: %f MHz...") % (freq / 1e6) << std::endl;
 uhd::tune_request_t tune_request(freq);
 usrp->set_rx_freq(tune_request);
 std::cout << boost::format("Actual RX Freq: %f MHz...") % (usrp->get_rx_freq() / 1e6) << std::endl << std::endl;

Using UHD API from C++

53

 // set the rf gain
 std::cout << boost::format("Setting RX Gain: %f dB...") % gain << std::endl;
 usrp->set_rx_gain(gain);
 std::cout << boost::format("Actual RX Gain: %f dB...") % usrp->get_rx_gain() << std::endl << std::endl;

 // set the antenna
 std::cout << boost::format("Setting RX Antenna: %s") % ant << std::endl;
 usrp->set_rx_antenna(ant);
 std::cout << boost::format("Actual RX Antenna: %s") % usrp->get_rx_antenna() << std::endl << std::endl;

 return EXIT_SUCCESS;
}

- Use the uhd/host/examples/init_usrp/CMakeLists.txt file as template

- Add the names of your C++ source files to the add_executable(…) section

- Put both modified CMakeLists.txt file and C++ file into an empty folder

- Create a “build” folder and invoke CMake the usual way:

mkdir build

cd build

cmake ../

make -j4

Building UHD C++ Program

54

- init_usrp example included as ~/ettus_workshop/examples/usrp_basic

$ cd ~/ettus_workshop/examples/usrp_basic

$ mkdir build

$ cd build

$ cmake ..

$ make

$./usrp_basic

$ ldd ./usrp_basic

Building UHD C++ Program

55

Building UHD C++ Program

56

- Open-source framework for SDR and signal processing

- Block-based dataflow architecture

- Each block runs in its own thread

- Data flows through a graph called a Flowgraph

- Blocks are nodes in a Flowgraph, and perform operations and signal processing

- Signals normalized between -1.0 and +1.0

- Similar in concept to LabVIEWTM and SimulinkTM

- Running C++ and Python under-the-hood

- Can write code directly, or use the GNU Radio Companion (GRC) graphical tool

- Hosted on GitHub at https://github.com/gnuradio/gnuradio

- Homepage is http://gnuradio.org/

GNU Radio

57

sudo apt-get -y install git swig cmake doxygen build-essential libboost-all-dev libtool libusb-1.0-0
libusb-1.0-0-dev libudev-dev libncurses5-dev libfftw3-bin libfftw3-dev libfftw3-doc libcppunit-1.13-0v5
libcppunit-dev libcppunit-doc ncurses-bin cpufrequtils python-numpy python-numpy-doc python-numpy-dbg
python-scipy python-docutils qt4-bin-dbg qt4-default qt4-doc libqt4-dev libqt4-dev-bin python-qt4
python-qt4-dbg python-qt4-dev python-qt4-doc python-qt4-doc libqwt6abi1 libfftw3-bin libfftw3-dev
libfftw3-doc ncurses-bin libncurses5 libncurses5-dev libncurses5-dbg libfontconfig1-dev libxrender-dev
libpulse-dev swig g++ automake autoconf libtool python-dev libfftw3-dev libcppunit-dev libboost-all-dev
libusb-dev libusb-1.0-0-dev fort77 libsdl1.2-dev python-wxgtk3.0 git-core libqt4-dev python-numpy ccache
python-opengl libgsl-dev python-cheetah python-mako python-lxml doxygen qt4-default qt4-dev-tools
libusb-1.0-0-dev libqwt5-qt4-dev libqwtplot3d-qt4-dev pyqt4-dev-tools python-qwt5-qt4 cmake git-core wget
libxi-dev gtk2-engines-pixbuf r-base-dev python-tk liborc-0.4-0 liborc-0.4-dev libasound2-dev python-gtk2
libzmq-dev libzmq1 python-requests python-sphinx libcomedi-dev python-zmq tree

Installing GNU Radio from Source Code

58

Install Ubuntu 20.04 Dependencies:

1. cd ~/workarea

2. git clone --recursive https://github.com/gnuradio/gnuradio.git

3. cd gnuradio/

4. git checkout v3.8.5.0

5. mkdir build && cd build

6. cmake ../

7. make -j4

8. sudo make install

9. sudo ldconfig

Installing GNU Radio from Source Code

59

- Binary packages available on Ubuntu Launchpad PPA

- Recommend building from source code

- Much more flexible when doing development

- The binary packages are less flexible and are often older or out-of-date

- Use when doing deployment

Installing GNU Radio from Binary Package

60

- Utility program to print detailed GNU Radio configuration information
- gnuradio-config-info --version (or -v)

- gnuradio-config-info --prefix

- gnuradio-config-info --enabled-components

- gnuradio-config-info --print-all

GNU Radio Utility Program

61

- Many examples included with GNU Radio installation

- Located at:

<install_path>/share/gnuradio/examples/

/usr/local/share/gnuradio/examples/

GNU Radio Examples

62

In-band telecommunication signaling system using the voice-frequency band over
telephone lines between telephone equipment and other communications devices

Dual-tone multi-frequency signaling (DTMF)

63

The DTMF telephone keypad is
laid out in a 4×4 matrix of push
buttons in which each row
represents the low frequency
component and each column
represents the high frequency
component of the DTMF signal.

- Dial Tone Example
- Generates a PSTN dial tone

- Does not use any hardware

- Verifies that all libraries can be found, and the GR run-time is working

- Run the following example:

- Flowgraph located at:

GNU Radio Dial Tone Example

64

$ python ~/ettus_workshop/flowgraphs/dial_tone_basic.py

~/ettus_workshop/flowgraphs/dial_tone_basic.grc

Dial Tone Example: Python Code

65

from gnuradio import analog
from gnuradio import audio
from gnuradio import blocks
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from optparse import OptionParser

class dial_tone_basic(gr.top_block):

 def __init__(self):
 gr.top_block.__init__(self, "Dial Tone Basic")

 ##
 # Variables
 ##
 self.samp_rate = samp_rate = 32000

Location: ~/ettus_workshop/flowgraphs/dial_tone_basic.py

Dial Tone Example: Python Code

66

 ##
 # Blocks
 ##
 self.blocks_add_xx = blocks.add_vff(1)
 self.audio_sink = audio.sink(32000, '', True)
 self.analog_sig_source_x_1 = analog.sig_source_f(samp_rate, analog.GR_COS_WAVE, 440, .4, 0)
 self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate, analog.GR_COS_WAVE, 350, .4, 0)
 self.analog_noise_source_x_0 = analog.noise_source_f(analog.GR_GAUSSIAN, .005, -42)

 ##
 # Connections
 ##
 self.connect((self.analog_noise_source_x_0, 0), (self.blocks_add_xx, 2))
 self.connect((self.analog_sig_source_x_0, 0), (self.blocks_add_xx, 0))
 self.connect((self.analog_sig_source_x_1, 0), (self.blocks_add_xx, 1))
 self.connect((self.blocks_add_xx, 0), (self.audio_sink, 0))

Dial Tone Example: Python Code

67

 def get_samp_rate(self):
 return self.samp_rate

 def set_samp_rate(self, samp_rate):
 self.samp_rate = samp_rate
 self.analog_sig_source_x_1.set_sampling_freq(self.samp_rate)
 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

def main(top_block_cls=dial_tone_basic, options=None):

 tb = top_block_cls()
 tb.start()
 try:
 raw_input('Press Enter to quit: ')
 except EOFError:
 pass
 tb.stop()
 tb.wait()

if __name__ == '__main__':
 main()

Dial Tone Example: Flowgraph

68

Location: ~/ettus_workshop/flowgraphs/dial_tone_basic.grc

Example: Dial Tone with Slider Widgets

69

Location: ~/ettus_workshop/flowgraphs/dial_tone_sliders.grc

Example: Dial Tone / Touch Tone

70

Location: ~/ettus_workshop/flowgraphs/dial_tone_interactive.grc

Example: Dial Tone / Touch Tone

71

Location: ~/ettus_workshop/flowgraphs/dial_tone_interactive.grc

Spectrum Display Tool uhd_fft

72

uhd_fft --args “addr=192.168.10.2” --freq 100e6 -s 10e6 -g 20

Signal Transmit Tool uhd_siggen

73

uhd_siggen --args “addr=192.168.10.2” --freq 915e6 -g 0

Signal Transmit Tool uhd_siggen_gui

74

uhd_siggen_gui --args “addr=192.168.10.2” --freq 3025e6 -g 0

At a command prompt, type: gnuradio-companion

Using gnuradio-companion

75

workspace
canvas

toolbar

library

terminal

Using gnuradio-companion - Search

76

Using gnuradio-companion - Search

77

Blocks have ports which input and output specific data types.

The color of the port indicates its data type.

Using gnuradio-companion

78

Help -> Types

Hot keys:

- Up/Down arrows change data type
- E/D keys enable/disable blocks

Using gnuradio-companion

79

Every block has properties that can be viewed and set

Using gnuradio-companion

80

Options Block

81

Options Block

82

- ID: File name of generated Python code

- TITLE: Title of flowgraph

- AUTHOR: Author of flowgraph

- DESCRIPTION: Description of flowgraph

- CANVAS SIZE: Size of working area for flowgraph

- GENERATE OPTIONS: QT GUI, WX GUI, No GUI, HIER BLOCK, HIER BLOCK (QT GUI)

- RUN: Autostart / OFF

- MAX NUMBER OF OUTPUTS: Limits max number of outputs of any block

- REALTIME SCHEDULING: Use real-time CPU scheduling to run flowgraph

- QSS THEME: Theme of flowgraph <install_path>/share/gnuradio/themes/

Throttle Block

83

- Distinct from a mathematical (DSP) calculation context, sample rate also refers to the rate at
which samples pass through the flowgraph

- If there is no rate control, hardware clock, or throttling mechanism, then the samples will be
generated, pass through the flowgraph, and be consumed as fast as possible (i.e., the
flowgraph will be only CPU-bound)

- This is desirable if you want to perform some specific DSP on data as quickly as possible (e.g.,
read from a file, re-sample, and write it back to disk)

- Only a block that represents some underlying hardware with its own clock (e.g. USRP, sound
card), or the Throttle Block itself, will use 'Sample Rate' to set that hardware clock, and
therefore have the effect of applying rate control to the samples in the flowgraph

- Not having a Throttle Block in a flowgraph where it’s needed may result in the flowgraph
consuming 100% of your CPU, and your system becoming unresponsive

Throttle Block (cont’d)

84

- A Throttle Block will simply apply host-based timing (against the 'wall clock') to control the rate
of the samples it produces (i.e. samples that it makes available on its outputs to
downstream blocks)

- A hardware Sink block will consume samples at a fixed rate (relative to the wall clock)

- The Throttle Block, or a hardware Sink block, will apply 'back pressure' to the upstream blocks
(the rate of work of the upstream blocks will be limited by the throttling effect of this
rate-controlling block)

- A hardware Source block will produce samples at a fixed rate (relative to the wall clock)

- In general, there should only ever be one block in a flowgraph that has the ability to throttle
sample flow

Fundamentals

Components of GNU Radio

85

- gr-analog

- Blocks for analog communications

- gr-block

- Basic block library

- gr-digital

- Blocks for digital communications

- gr-fec

- Forward Error Correction signal processing blocks

- GNU Radio is comprised of components

- Components consist of blocks as well as other functionality

- The top-level components included in the GNU Radio distribution are:

- gr-fft

- FFT signal processing blocks

- gr-filter

- Filter signal processing blocks

- gr-runtime

- GNU Radio core runtime infrastructure

- gr-trellis

- Trellis-based algorithms for GNU Radio

- gr-vocoder

- Blocks implementing voice codecs

- gr-wavelet

- Wavelet signal processing blocks for GNU Radio

Components of GNU Radio

86

Graphical Interfaces

Components of GNU Radio

87

- gr-qtgui

- QT 5 GUI Interface

- QT is the default/primary GUI toolkit

- wxWidgets fully deprecated and no longer supported

Hardware Interfaces

Components of GNU Radio

88

- gr-audio

- Block for all supported audio sound systems

- gr-comedi

- Blocks for the comedi library

- gr-fcd

- Funcube Dongle source block for GNU Radio

- gr-shd

- Blocks for the Simplex Hardware Driver (SHD)

- gr-uhd

- Blocks to interface with USRP / UHD

- gr-osmocom

- Universal Block to interface with various SDR Hardware

Example: Signal Source

89

Location: ~/ettus_workshop/flowgraphs/signal_source.grc

Example: Signal Source Running

90

Using GNU Radio from Python

91

Generate Python from GRC Flow graph

>>> import gnuradio
>>> ...

Invoke directly from the Linux command line:
$ python example_3.py

Using GNU Radio from Python

92

Example: Basic Signal Transmission

93

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.grc

Example: Basic Signal Transmission

94

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

#!/usr/bin/env python2
-*- coding: utf-8 -*-
##
GNU Radio Python Flow Graph
Title: Basic Signal Tx
Generated: Mon Apr 10 21:33:56 2017
##

from gnuradio import analog
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio import uhd
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from optparse import OptionParser
import time

Setting Python Environment
Basic Informational Header

Required GNU Radio / Python Imports

Example: Basic Signal Transmission

95

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

class basic_signal_tx(gr.top_block):

 def __init__(self):
 gr.top_block.__init__(self, "Basic Signal Tx")

Top Level Class
- Class name is set by “ID” in “Options” Block

Example: Basic Signal Transmission

96

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 ##
 # Variables
 ##
 self.samp_rate = samp_rate = 1e6
 self.gain = gain = 10
 self.freq = freq = 1e9
 self.antenna = antenna = "TX/RX"

All Variables are contained within Parent Class

Example: Basic Signal Transmission

97

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 ##
 # Blocks
 ##
 self.uhd_usrp_sink_0 = uhd.usrp_sink(
 ",".join(("", "")),
 uhd.stream_args(
 cpu_format="fc32",
 channels=range(1),
),
)
 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)
 self.uhd_usrp_sink_0.set_center_freq(freq, 0)
 self.uhd_usrp_sink_0.set_gain(gain, 0)
 self.uhd_usrp_sink_0.set_antenna(antenna, 0)
 self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, 1000, 1, 0)

Creation of UHD Sink Block

Calls to apply Sample Rate, Center Frequency,
Gain, Antenna Selection

Creation of Signal Source Block

Example: Basic Signal Transmission

98

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 ##
 # Connections
 ##
 self.connect((self.analog_sig_source_x_0, 0), (self.uhd_usrp_sink_0, 0))

Creating the connection between Signal Source and UHD Sink Block

Example: Basic Signal Transmission

99

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 def get_samp_rate(self):
 return self.samp_rate

 def set_samp_rate(self, samp_rate):
 self.samp_rate = samp_rate
 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)
 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

 def get_gain(self):
 return self.gain

 def set_gain(self, gain):
 self.gain = gain
 self.uhd_usrp_sink_0.set_gain(self.gain, 0)

All Variables have getters/setters

Setters will recall UHD method to apply any updated value

Example: Basic Signal Transmission

100

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

 def get_freq(self):
 return self.freq

 def set_freq(self, freq):
 self.freq = freq
 self.uhd_usrp_sink_0.set_center_freq(self.freq, 0)

 def get_antenna(self):
 return self.antenna

 def set_antenna(self, antenna):
 self.antenna = antenna
 self.uhd_usrp_sink_0.set_antenna(self.antenna, 0)

Example: Basic Signal Transmission

101

Location: ~/ettus_workshop/flowgraphs/basic_signal_tx.py

def main(top_block_cls=basic_signal_tx, options=None):

 tb = top_block_cls()
 tb.start()
 try:
 raw_input('Press Enter to quit: ')
 except EOFError:
 pass
 tb.stop()
 tb.wait()

if __name__ == '__main__':
 main()

Passing of created class to main()

Initialization of “Top Block”

Starting of “Top Block / Sample Streaming”

Try/Run until raw input is entered

Stopping of Flowgraph / Top Block

Waits until the .stop() call has propagated
through all blocks before returning

Execution of main() function to Python Interpreter

Example: Signal Source with Noise

102

Location: ~/ettus_workshop/flowgraphs/signal_source_noise.grc

Example: Signal Source with Noise Running

103

Example: Filters - Flowgraph

104

Location: ~/ettus_workshop/flowgraphs/filters_basic.grc

Enable [E]
or
Disable [D]

Only enable one
Filter per run

Example: Filters - Low Pass

105

Location: ~/ettus_workshop/flowgraphs/filters.grc

Example: Filters - High Pass

106

Location: ~/ettus_workshop/flowgraphs/filters.grc

Example: Filters - Band Pass

107

Location: ~/ettus_workshop/flowgraphs/filters.grc

Example: Filters - Band Reject

108

Location: ~/ettus_workshop/flowgraphs/filters.grc

- An OOT module is a GNU Radio component that does not live within the GNU Radio source tree, and is not included

with the GNU Radio distribution

- OOT modules allow third-parties to extend GNU Radio with their functions and blocks

- Comprehensive GNU Radio Archive Network (CGRAN)

- Directory of open-source OOT modules

- Not a hosting site

- Most OOT modules are hosted on GitHub

- http://www.cgran.org/

- gr_modtool

- The swiss army knife of module editing / creating

- https://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules

Out-of-Tree (OOT) Modules

109

CGRAN

110

1. git clone <repository>

2. cd <repository-path>

3. mkdir build && cd build

4. cmake ../

5. make -j4

6. sudo make install

7. sudo ldconfig

Out-of-Tree Module Installation

111

Record & Playback of Signals

112

- There are many ways to record files and playback files, and this can be highly customized
- Use UHD utility programs

- Use existing utility programs in GitHub
- https://github.com/EttusResearch/uhd/tree/master/host/examples

- Customize them to modify and add functionality
- Either in C++ or in Python

- https://github.com/EttusResearch/uhd/blob/master/host/examples/rx_samples_to_file.cpp
- https://github.com/EttusResearch/uhd/blob/master/host/examples/python/rx_to_file.py

- Use GNU Radio
- Easy to do with a flowgraph
- Can easily add in-line, real-time signal processing

- Various data types supported: Complex, Int, Short, Float, Double, etc.
- The higher the sampling rate:

- The higher the disk usage
- The higher the disk IO

- Use NVMe disks, not SATA disks, not external USB flash disks

Record & Playback of Signals

113

- Record Signal using UHD utility program:

$ /usr/local/lib/uhd/examples/rx_samples_to_file \
 --args "type=b200" \
 --type float \
 --freq 433.72e6 \
 --rate 1e6 \
 --gain 10 \
 --ant TX/RX \
 --bw 1e6 \
 --file my_iq_datafile.f32

Record & Playback of Signals

114

- Playback Signal using UHD utility program:

$ /usr/local/lib/uhd/examples/tx_samples_from_file \
 --args "type=b200" \
 --type float \
 --freq 433.72e6 \
 --rate 1e6 \
 --gain 50 \
 --ant TX/RX \
 --bw 1e6 \
 --file my_iq_datafile.f32

Record & Playback of Signals

115

- Record Signal using GNU Radio flowgraph:

Record & Playback of Signals

116

- Playback Signal using GNU Radio flowgraph:

● The previous examples read and write raw I/Q data files

○ Fast to read, write, and process, but there is no header and no metadata

● Often, over time, it becomes difficult to manage large sets of raw signal capture files

○ You cannot remember, and/or did not document, the system configuration used for the capture

○ Trying to track this in the filename is tedious, error-prone, and does not scale

■ Cannot easily annotate captures

○ Difficult to archive, organize, and then later re-use captures

○ Difficult to share captures with other colleagues for collaboration

○ Difficult to create, organize, and publish data sets consisting of multiple captures

○ Inhibits the ability to reproduce research results

○ Basically, highly susceptible to “bit rot”

Signal Data Formats

117

● The Signal Metadata Format (SigMF) specifies a way to describe sets of recorded digital signal samples

with metadata written in JSON. SigMF can be used to describe general information about a collection of

samples, the characteristics of the system that generated the samples, and features of the signal itself.

● Designed to enable easy sharing, archiving, and publishing of datasets

● Open specification and open-source implementation on GitHub

● Can be used from C++, Python, GNU Radio (not specific to GNU Radio)

● Metadata is written with JSON
● https://github.com/gnuradio/SigMF

● https://pypi.org/project/SigMF/

● A SigMF recording is one flat data file and one flat metadata file

○ The data file is just raw samples

○ The metadata file is a JSON file with several sections

● Recordings can be stored and distributed in an archive format

● Archives have a defined directory structure for including multiple recordings

SigMF

118

● The JSON file contains several sections:

○ Global section: The General information about the file. The minimal information needed to parse the

dataset file. Example fields:

■ Datatype: How are the samples stored?

■ Sample Rate: What is the sample rate at which this data was recorded?

■ Author: Who created these files?

■ Version: Which version of the SigMF specification was used to create this capture?

■ License: What is the license of this data?

■ Hash: A hash of the data to provide proof of integrity.

■ Description: A top-level description of the capture dataset.

SigMF

119

● The JSON file contains several sections:

○ Captures section: An array of segments that describe the parameters of the capture, starting at a

certain sample index. Example fields:

■ Center Frequency: At what frequency was the radio tuned to during the capture?

■ Timestamp: What is the timestamp of a particular sample index?

○ Annotations section: An array of segments that describe features or provides comments about the

signal data. Specified by sample number. Can be "code comments" like "detected interference here",

"classified modulation as QAM64", "cat jumped on antenna", etc.

SigMF

120

● How to handle continuously-varying fields/metadata?

○ Dealing with fields that are continuously changing can be a significant challenge for metadata

○ Examples:

■ If your receiver is in a vehicle, how do you record the changing geolocation in a useful way?

■ If your antenna is a spinning dish, how do you record the changing azimuth of your aperture?

○ These continuously-varying fields/metadata are just another SigMF recording

● Several open-source tools now have SigMF integration:

○ Inspectrum

○ Universal Radio Hacker (URH)

○ GNU Radio (dedicated blocks)

SigMF

121

SigMF

122

● Driven by MIT Haystack Observatory

● Based on the more-generalized Hierarchical Data Format (HDF), version 5

● Specifically designed to store and organize large amounts of data

● HDF5 used by NASA, NOAA, and many other government agencies and scientific research organizations

● HDF5 has a hierarchical structure, and is more complicated than SigMF, which is flat and easy-to-parse
● https://github.com/MITHaystack/digital_rf

● https://en.wikipedia.org/wiki/Hierarchical_Data_Format

● The Digital RF software suite includes:

○ Libraries for reading and writing data in C, Python, GNU Radio (dedicated blocks), and Matlab

○ The thor.py UHD radio recorder script

○ Python tools for managing and processing Digital RF data

○ Example scripts that demonstrate basic usage

○ Example applications that encompass a complete data recording and processing chain

Digital RF

123

Digital RF

124

● Many open datasets are now being published using SigMF and Digital RF formats

● Some example public datasets:

○ “An IEEE 802.11 a/g (WiFi) massive-scale and labeled datasets for Radio Fingerprinting” from Northeastern

University (NEU) in Boston
■ https://www.northeastern.edu/wiot/wp-content/uploads/2020/07/dataset_release.pdf

○ “RF Datasets For Machine Learning” from DeepSig
■ https://www.deepsig.ai/datasets

○ “Comprehensive LoRa RF Datasets for Device Fingerprinting Using Deep Learning” from Oregon State University
■ http://research.engr.oregonstate.edu/hamdaoui/sites/research.engr.oregonstate.edu.hamdaoui/fil

es/release_note_2021.pdf

○ Data from the NASA Voyager 1 space probe from Daniel Estévez
■ https://destevez.net/2021/09/decoding-voyager-1/

Open Datasets in SigMF and Digital RF

125

1. git clone git://git.osmocom.org/gr-osmosdr

2. cd gr-osmosdr/

3. mkdir build && cd build

4. cmake ../

5. make -j4

6. sudo make install

7. sudo ldconfig

gr-osmosdr

126

● Generic SDR hardware interface for GNU Radio
● Uses UHD under-the-hood
● Needed for GQRX
● https://github.com/osmocom/gr-osmosdr

- A free open-source SDR receiver built on GNU Radio and QT

- Features:

- Real-time FFT plot and waterfall

- Demodulators for AM, SSB, NBFM (mono), WBFM (stereo)

- Record and playback to/from IQ file

- Basic remote control through TCP socket connection

- Created by Alexandru Csete in Denmark

- http://gqrx.dk/

- https://github.com/csete/gqrx

GQRX

127

1. sudo apt-get install qt5-default qttools5-dev-tools libqt5svg5 libqt5svg5-dev

2. git clone https://github.com/csete/gqrx.git

3. cd gqrx

4. mkdir build && cd build

5. cmake ../

6. make -j4

7. sudo make install

8. sudo ldconfig

Installing GQRX

128

- To start, run at command prompt: gqrx

- Select Device, Set Input Rate, Decimation and Bandwidth

GQRX Screenshot

129

GQRX Screenshot

130

Demo - GQRX (1M Point FFT / 50 MS/s)

131

Frequency 871 MHz - NFM, P25, LTE, GSM, WCDMA

gr-paint

132

- Based on “Spectrum Painter” by polygon

- Github: https://github.com/polygon/spectrum_painter

- gr-OOT created by Ron “drmpeg” Economos

- SDR based OFDM transmitter that "paints" monochrome images into the waterfall

- Converts a byte stream of image data into a 4K IFFT OFDM IQ sequence for transmission

- Github: https://github.com/drmpeg/gr-paint

1. git clone https://github.com/drmpeg/gr-paint.git

2. cd gr-paint

3. mkdir build

4. cd build

5. cmake ..

6. make

7. sudo make install

8. sudo ldconfig

gr-paint - Installation

133

1. Open GQRX (gqrx -r)

2. Open Devices Menu (or auto popup)

3. Select USRP device

4. Set 2 MS/s sample rate

5. Set 2 MHz Bandwidth

6. Click OK

gr-paint - RX demo

134

1. In Main GQRX window, click “Play” button

2. Tune to 915 MHz

3. Under “Input controls” tab set Gain to 50-70dB

4. Select proper Antenna

gr-paint - RX demo

135

1. Under “FFT Settings” tab set:

FFT Size: 65536

Adjust Pandapter to the left to make Waterfall larger, FFT smaller

dB Range to ~ 100 dB

gr-paint - RX demo

136

Demo - gr-paint

137

Demo - gr-paint

138

- SpectrumWiki - http://www.spectrumwiki.com/Index.aspx

Signal Identification Resources

139

- Signal Identification Guide

- http://www.sigidwiki.com/wiki/Signal_Identification_Guide

Signal Identification Resources

140

Signal Identification Resources

141

Signal Identification Resources

142

Broadcast FM Spectrum

143

Broadcast FM Spectrum

144

- Commercial FM radio is usually between frequencies 87.8 and 108.0 MHz (USA/Canada)

- 101 channels total

- Channels are 200 KHz wide, aligned to a multiple of 100 KHz

- The FCC physically spaces local FM channels 400 KHz apart

- In USA and Canada, only odd multiples are used

- In parts of Europe, India, and Africa, even and odd multiples are used

- The maximum permitted frequency error of the unmodulated carrier is specified to be within 2000 Hz of the assigned frequency

- System was originally mono, and stereo was added later in 1960s

FM Radio Broadcasting

145

- RDS is the Radio Data System, created in 1984

- In the USA, known as Radio Broadcast Data System (RBDS)

- Standard for embedding small amounts of digital data into commercial FM broadcasts

- RDS transmits time, station identification, programme information, and radio text (currently-playing
song title and artist)

- 4 KHz-wide BPSK signal, data rate of 1187.5 bits per second, on a 57 KHz sub-carrier

- The sub-carrier is set to the third harmonic of the 19 KHz stereo pilot tone

- There are exactly 48 cycles of the sub-carrier during every data bit

- Uses CRC for error correction

RDS / RBDS

146

- AF (alternative frequencies) -- This allows a receiver to re-tune to a different frequency providing the same station when the first signal becomes too weak
(e.g., when moving out of range). This is often used in car stereo systems.

- CT (clock time) -- Can synchronize a clock in the receiver or the main clock in a car. Due to transmission vagaries, CT can only be accurate to within 100 ms of UTC.

- EON (enhanced other networks) -- Allows the receiver to monitor other networks or stations for traffic programmes, and automatically temporarily tune into that station.

- PI (programme identification) -- This is the unique code that identifies the station. Every station receives a specific code with a country prefix. In the US, PI is determined by applying a formula to the station's
call sign.

- PS (programme service) -- This is simply an eight-character static display that represents the call letters or station identity name. Most RDS capable receivers display this information and, if the station is
stored in the receiver's presets, will cache this information with the frequency and other details associated with that preset.

- PTY (programme type) -- This coding of up to 31 pre-defined programme types (e.g., in Europe: PTY1 News, PTY6 Drama, PTY11 Rock music) allows users to find similar programming by genre. PTY31
seems to be reserved for emergency announcements in the event of natural disasters or other major calamities.

- REG (regional) -- This is mainly used in countries where national broadcasters run "region-specific" programming such as regional opt-outs on some of their transmitters. This functionality allows the user to
"lock-down" the set to their current region or let the radio tune into other region-specific programming as they move into the other region.

- RT (radio text) -- This function allows a radio station to transmit a 64-character free-form text that can be either static (such as station slogans) or in sync with the programming (such as the title and artist of
the currently playing song).

- TA, TP (traffic announcement, traffic programme) -- The receiver can often be set to pay special attention to this flag and, for example, stop the tape/pause the CD or retune to receive a traffic bulletin. The TP
flag is used to allow the user to find only those stations that regularly broadcast traffic bulletins whereas the TA flag is used to signal an actual traffic bulletin in progress, with radio units perhaps performing
other actions such as stopping a cassette tape (so the radio can be heard) or raising the volume during the traffic bulletin.

- TMC (traffic message channel) -- Digitally encoded traffic information. Not all RDS equipment supports this, but it is often available for automotive navigation systems. In many countries only encrypted traffic
data is broadcast, and so an appropriate decoder, possibly tied to a subscription service, is required to use the traffic data.

RDS Information Fields

147

FM Receiver in GRC

148

Location: ~/ettus_workshop/flowgraphs/wbfm_rx_commercial.grc

FM Receiver in GRC (ISM)

149

Location: ~/ettus_workshop/flowgraphs/wbfm_rx_ism.grc

FM Transmitter in GRC (ISM)

150

Location: ~/ettus_workshop/flowgraphs/wbfm_tx_ism.grc

1. sudo apt-get install liblog4cpp5-dev

2. git clone https://github.com/bastibl/gr-rds.git

3. cd gr-rds

4. mkdir build && cd build

5. cmake ../

6. make -j4

7. sudo make install

8. sudo ldconfig

Out-of-Tree Module Installation: gr-rds

151

- In GRC, open:
~/ettus_workshop/flowgraphs/rds_rx.grc

- Verify correct antenna under Options Block
- Start flowgraph
- Tune to strong station with RDS
- Adjust Gain slider if needed

FM RDS Receiver in GRC - Part 1

152

Location: ~/ettus_workshop/flowgraphs/rds_rx.grc

FM RDS Receiver in GRC - Part 2

153

Location: ~/ettus_workshop/flowgraphs/rds_rx.grc

Out-of-Tree Module Installation: gr-rds

154

FM RDS Transmitter in GRC

155

Location: ~/ettus_workshop/flowgraphs/rds_tx.grc

● Supported Hardware
○ Depends on processing load and I/Q data rates
○ Intel i7 or i9 CPU is ideal

■ Minimum 3.0 GHz clock speed, 6 cores
○ Intel i3 and i5 can work too (with lighter loads and lower sampling rates)
○ Apple M1 CPU in macOS 11, 12

■ Performance results pending
○ Raspberry Pi 3 and 4 on ARM CPU (with lighter loads and lower sampling rates)

● Supported Software
○ Linux is the de-facto “standard” operating system

■ Most development done on Linux, most users on Linux
■ Ubuntu and Fedora
■ Installation guides on Ettus and GNU Radio websites

○ Apple macOS also works well
○ Windows support lacking but improving, use scripts from Geof Nieboer

■ http://www.gcndevelopment.com/gnuradio/index.htm
■ https://github.com/gnieboer/GNURadio_Windows_Build_Scripts

○ Conda from Ryan Voltz at MIT Haystack
■ https://github.com/ryanvolz/radioconda
■ https://wiki.gnuradio.org/index.php/CondaInstall

Supported Hardware & Software

156

- GNU Radio Documentation and Wiki:

- https://wiki.gnuradio.org/index.php/Main_Page

- Ettus Research Knowledge Base (KB) and Application Notes:

- https://kb.ettus.com/

- https://kb.ettus.com/Application_Notes

- USRP and UHD User Manual:

- http://uhd.ettus.com/

- http://files.ettus.com/manual/

- Additional Resources on the KB:

- https://kb.ettus.com/Suggested_Videos

- https://kb.ettus.com/Suggested_Reading

- PySDR by Dr Marc Lichtman:

- https://pysdr.org/

- Wireless Pi Blog by Dr Qasim Chaudhari:

- https://wirelesspi.com/

Technical Resources

157

- "The Scientist and Engineer's Guide to DSP" by

Dr Steven Smith:

- http://www.dspguide.com/

- Direct email address

- support@ettus.com

- Mailing lists usrp-users and discuss-gnuradio

- https://kb.ettus.com/Mailing_Lists

- GNU Radio Matrix Chat Server

- https://chat.gnuradio.org/

Getting Help and Technical Support

158

- GNU Radio Conference 2022 (GRCon 2022)

- Week of September 26 to 30

- Tuesday, Wednesday, Thursday are the primary technical days

- Venue is the Hilton Hotel in Washington DC

- The videos for the 2015, 2016, 2017, 2018, 2019, 2020, 2021 events are archived online

- https://www.youtube.com/c/GNURadioProject/playlists

- https://events.gnuradio.org/e/grcon22

- Other relevant events:

- https://kb.ettus.com/SDR_Events

- FOSDEM: https://fosdem.org/2022/

- NEWSDR: http://www.sdr-boston.org/

- Cyberspectrum: https://www.meetup.com/Cyberspectrum/about/

- SDRA: https://2022.sdra.io/

Upcoming SDR Events

159

