
1

An Introduction to MPI Parallel
Programming with Java

Xuguang Chen
Department of Computer Science

Saint Martin's University
Lacey, WA,

2

What is MPI?
• Message Passing Interface (MPI)

– MPI is a specification for the developers and users of message
passing libraries.

– By itself, it is NOT a library - but rather the specification of what such
a library should be.

• The MPI standard has gone through a number of revisions, with the
most recent version being MPI-4.0
– https://www.mpi-forum.org/

• Actual MPI library implementations differ in which version and features
of the MPI standard they support.

• MPI primarily addresses the message-passing parallel programming
model
– Data is moved from the address space of one process to that of

another process through cooperative operations on each process.

https://www.mpi-forum.org/�

3

Background Information

• Execution model in MPI
– Parallel program is launched as set of independent, identical

processes
– All the processes contain the same program code and instructions
– Processes can reside in different nodes or even in different

computers
– The way to launch parallel program is implementation dependent

• e.g., mpirun, mpiexec
– There are two classes of message passing (transfers)

• Point-to-Point messages involve only two tasks
• Collective messages involve a set of tasks

• Data model in MPI
– All variables and data structures are local to the process
– Processes can exchange data by sending and receiving messages

4

Background Information
Execution Model

Data Model

5

Background Information
• MPJ Express

– An open source Java message passing library
– It allows application developers to write and execute parallel

applications for multicore processors and compute
clusters/clouds.

– It is distributed under the MIT (a variant of the LGPL) license.
– Cite (reference) the following paper for acknowledging the use of

MPJ Express in research work.
• Aamir Shafi, Bryan Carpenter, Mark Baker, Nested parallelism for

multi-core HPC systems using Java, Journal of Parallel and
Distributed Computing, Volume 69, Issue 6, 2009, Pages 532-545,
ISSN 0743-7315, https://doi.org/10.1016/j.jpdc.2009.02.006.

– Documents
• http://www.mpjexpress.org/docs/javadocs/index.html

– URL
• http://www.mpjexpress.org/

https://doi.org/10.1016/j.jpdc.2009.02.006�
http://www.mpjexpress.org/docs/javadocs/index.html�
http://www.mpjexpress.org/�

Installation and Execution
• Download Software

– Download and install JDK, such as
https://www.oracle.com/java/technologies/downloads/

– Download MPJ and unzip, such as “mpj-v0_44.zip”
https://sourceforge.net/projects/mpjexpress/files/releases/

• Install in Linux
– Download and unzip

• Assume that the files are saved in a directory named mpj-v0_44
– Setting the path and variables

• export MPJ_HOME=/home/pi/mpj-v0_44
• export PATH=$MPJ_HOME/bin:$PATH

6

https://www.oracle.com/java/technologies/downloads/�
https://sourceforge.net/projects/mpjexpress/files/releases/�

Installation and Execution
• Install in Windows

– Assume that the zipped file is unzipped in a folder named
“mpj_v0_44” on the “D” drive

– Setting the path and variables in Windows 11
• Right click to show “settings” menu
• Choose “System” on the menu
• Choose “Advanced system settings”
• Choose “Environment Variables”
• Choose “New” under the top section
• Enter “MPJ_HOME” in Variable name
• Enter “D:\mpj_v0_44” in Variable value
• Choose “Path” in the bottom section, and then click “Edit”
• Choose “New” on “Edit environment variable”, enter

“%MPJ_HOME%\bin;”, and click “ ”
– The path and variables in Windows 10 can similarly be set 7

Installation and Execution
• Connect Raspberry PI to a Laptop

– The raspberry pi needs to be on the same network as the laptop,
i.e., both are connected to the same router.

– Connect the raspberry Pi to the monitor, mouse and keyboard.
– Using the pi’s terminal:

• Type: ifconfig
– If you’re using ethernet, look for the address in the eth0

section
– If you’re using wifi, look for the address in the wlan0

section.
– Type sudo halt to shut down the rasperry pi.
– Open a PUTTY, enter the IP, and select “Enable X11 forwarding”

• Username is pi, and password is raspberry.

8

Installation and Execution
• Compilation and Execution in Windows

– Edit source code
• Many text editors can be used, such as Notepad++, Textpad,

Windows Notepad, or NetBeans
– Compile

• javac -cp .;%MPJ_HOME%/lib/mpj.jar file_name.java
– Execution

• %MPJ_HOME%/bin/mpjrun.bat -np 2 file_name
• Compilation and Execution in Linux

– Edit source code
• Many text editors can be used, such as pico

– Compile
• javac -cp .:$MPJ_HOME/lib/mpj.jar file_name.java

– Execution
• mpjrun.sh -np 2 file_name

9

10

11

First Program
• A variation on the standard hello world program - Hello World

program for multiple processes.

import mpi.*;
public class Parallel_1_Basic
{

public static void main(String args[]) throws Exception
{

int rank = 0;
int size = 0;

MPI.Init(args);

size = MPI.COMM_WORLD.Size();
rank = MPI.COMM_WORLD.Rank();

System.out.println(“Process No."+rank+": \"Hello World!\"");
MPI.Finalize();

}
}

12

First Program

• Sample of Execution Results
– In essence, each process executes autonomously.
– The messages do not necessarily print in order
– If five separate processes are running on different processors,

and it cannot know beforehand which one will execute its print
statement first.

– If the processes are being scheduled on the same processor
instead of multiple processors, then it is up to the operating
system to schedule the processes, and it has no preference of
any one of the processes over any other process of ours.

13

14

First Program
• Explanation

– import mpi.*
• It needs to import the “mpi” package to make available the MPI

– MPI.Init(args)

– MPI.Finalize()

15

First Program
• Explanation (continued)

– MPI.COMM_WORLD
• A predefined communicator
• It allows communication with all processes that are accessible

after MPI initialization and processes are identified by their rank in
the group of MPI_COMM_WORLD.

– MPI.COMM_WORLD.Size()
• Size() returns the number of processors in the group of this

communicator
– MPI.COMM_WORLD.Rank()

• Rank() returns the rank of the calling process in the group of this
communicator

• Separate codes in one file
– When an MPI program runs, each process receives the same code.
– However, each process can be assigned a different task.

• This allows us to embed a separate code for each process into
one file.

16

First Program

17

Point-to-Point Communications and Collective Operations

– MPJ supports point-to-point communications and collective operations
• Point-to-point communications

– A communication between two processes: send and receive.
• Collective operations

– The communication that involves a group or groups of
processes, e.g., broadcast, scatter, gather, and reduce.

• Blocking communications
– A blocking send operation terminates when the message is

received by the destination.
• I.e., a program that invokes a blocking send operation will block

until the message is received by the destination.
– A blocking receive operation terminates when a message is

received by the caller.
• I.e., a program that invokes a blocking receive primitive will

block until a message is received by the caller.
– Example

18

In a point-to-point communication, a piece of data (a message) is copied
from the memory of one process to the memory of another process.

https://skirt.ugent.be/skirt9/_parallel_messaging.html

19

20

21

22

23

Point-to-Point Communication – Send()

24

25

Point-to-Point Communication – Recv()

26

Collective Communication

• Collective communication is defined as communication that involves a
group or groups of processes.
– Broadcast
– Gather
– Scatter
– All gather
– Reduce
– All reduce
– All total

27

Collective Operations - Broadcast

• Broadcast
– Broadcast a message from one member process to all members

of a group (including itself).

– Example

28

29

Collective Operations - Broadcast

30

Collective Operations - Gather

• Gather
– Gather data from all members of a group to one member.

– Example

31

• The n messages sent by the processes in the group are concatenated in rank
order, and the resulting message is received by the root as if by a call to
MPI_RECV(recvbuf, recvcountn, recvtype, ...).
• The receive buffer is ignored for all non-root processes.

32

Collective Operations - Gather

33

Collective Operations - Scatter
• Scatter

– Split a data into N parts and send each part to each member
process of a group.

– Example

34

• The root sends a message with MPI_Send(sendbuf, sendcountn, sendtype, …).
• This message is split into n equal segments, the ith segment is sent to the ith

process in the group, and each process receives this message as above.
• The send buffer is ignored for all non-root processes.

35

Collective Operations - Scatter

36

37

Collective Operations - Reduce
• Reduce

– Global reduction operations such as sum, max, min, or user-
defined functions, where the result is returned to one member
process.

– Example

38

39

Collective Operations - Reduce

40

Collective Operations – All_Reduce

• All Reduce
– The result is returned to all processes in a group.
– All processes from the same group participating in these

operations receive identical results.

– Example

41

42

Collective Operations – All_Gather

• All_Gather
– The outcome of a call to MPI_ALLGATHER(...) is as if all

processes executed n calls to
MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, root, comm)
where root = 0, …, n-1

– Example
43

44

45

Collective Operations – All_to_ALL
• All_to_ALL

– Each process sends distinct data to each of the receivers.

– Example

46

Collective Operations – All_to_ALL

47

• Each process sends distinct data to each of the receivers.
• The jth block sent from process i is received by process j and is placed in
the ith block of recvbuf.

48

References
• MPI 4.0 Standard

– https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
• MPJ Express

– http://mpjexpress.org/
• MPJ Express Documents

– http://mpjexpress.org/docs/javadocs/index.html
• MPJ Express User Guide

– Linux: http://mpjexpress.org/docs/guides/linuxguide.pdf
– Windows: http://mpjexpress.org/docs/guides/windowsguide.pdf

• MPICH
– https://www.mpich.org/

• Mpi4py
– https://mpi4py.readthedocs.io/en/stable/

49

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf�
http://mpjexpress.org/�
http://mpjexpress.org/docs/guides/linuxguide.pdf�
http://mpjexpress.org/docs/guides/windowsguide.pdf�
https://www.mpich.org/�
https://mpi4py.readthedocs.io/en/stable/�

References
• DeinoMPI

– http://mpi.deino.net/
• Microsoft MPI

– https://docs.microsoft.com/en-us/message-passing-
interface/microsoft-mpi

50

http://mpi.deino.net/�

	An Introduction to MPI Parallel Programming with Java
	What is MPI?
	Background Information
	Background Information
	Background Information
	Installation and Execution
	Installation and Execution
	Installation and Execution
	Installation and Execution
	幻灯片编号 10
	First Program
	First Program
	幻灯片编号 13
	First Program
	First Program
	First Program
	Point-to-Point Communications and Collective Operations
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	Point-to-Point Communication – Send()
	幻灯片编号 24
	Point-to-Point Communication – Recv()
	Collective Communication
	Collective Operations - Broadcast
	幻灯片编号 28
	Collective Operations - Broadcast
	Collective Operations - Gather
	幻灯片编号 31
	Collective Operations - Gather
	Collective Operations - Scatter
	幻灯片编号 34
	Collective Operations - Scatter
	幻灯片编号 36
	Collective Operations - Reduce
	幻灯片编号 38
	Collective Operations - Reduce
	Collective Operations – All_Reduce
	幻灯片编号 41
	幻灯片编号 42
	Collective Operations – All_Gather
	幻灯片编号 44
	幻灯片编号 45
	Collective Operations – All_to_ALL
	Collective Operations – All_to_ALL
	幻灯片编号 48
	References
	References

