An Introduction to MPI Parallel
Programming with Java

Xuguang Chen
Department of Computer Science
Saint Martin's University
Lacey, WA,

What is MPI1?

Message Passing Interface (MPI)

— MPI is a specification for the developers and users of message
passing libraries.

— By itself, it is NOT a library - but rather the specification of what such
a library should be.

The MPI standard has gone through a number of revisions, with the
most recent version being MPI1-4.0

— https://www.mpi-forum.org/

Actual MPI library implementations differ in which version and features
of the MPI standard they support.

MPI primarily addresses the message-passing parallel programming
model

— Data is moved from the address space of one process to that of
another process through cooperative operations on each process.

https://www.mpi-forum.org/�

Background Information

Execution model in MPI
— Parallel program is launched as set of independent, identical
processes
— All the processes contain the same program code and instructions
— Processes can reside in different nodes or even in different
computers
— The way to launch parallel program is implementation dependent
e e.g., mpirun, mpiexec
— There are two classes of message passing (transfers)

* Point-to-Point messages involve only two tasks
» Collective messages involve a set of tasks

Data model in MPI
— All variables and data structures are local to the process
— Processes can exchange data by sending and receiving messages

3

Background Information

Execution Model

(Parallel program

——

Process 1

Data Model

Process 1 (rank 0)
a=1.0
b=2.0

9l Process 2
||

Process N]

/

M/

MPI messages

Process 3 (rank 2)
a=2.0
b=1.0

"

’[

Process 2 (rank 1)
a = '1 IO
b=-2.0

J

|

Process N (rank N-1)
a=7.0
b=-8.3

Background Information

e MPJ EXxpress

An open source Java message passing library
It allows application developers to write and execute parallel
applications for multicore processors and compute
clusters/clouds.
It is distributed under the MIT (a variant of the LGPL) license.
Cite (reference) the following paper for acknowledging the use of
MPJ Express in research work.

« Aamir Shafi, Bryan Carpenter, Mark Baker, Nested parallelism for

multi-core HPC systems using Java, Journal of Parallel and

Distributed Computing, Volume 69, Issue 6, 2009, Pages 532-545,
ISSN 0743-7315, htips://doi.org/10.1016/].jpdc.2009.02.006.

Documents

o http://www.mpjexpress.org/docs/javadocs/index.html
URL

e http://www.mpjexpress.org/

https://doi.org/10.1016/j.jpdc.2009.02.006�
http://www.mpjexpress.org/docs/javadocs/index.html�
http://www.mpjexpress.org/�

Installation and Execution

 Download Software
— Download and install JDK, such as
https.//www.oracle.com/java/technologies/downloads/
— Download MPJ and unzip, such as “mpj-v0_44.zip”
https.//sourceforge.net/projects/mpjexpress/files/releases/

o Install in Linux
— Download and unzip
« Assume that the files are saved in a directory named mpj-vO_44
— Setting the path and variables
o export MPJ_HOME=/home/pi/mpj-v0_44
e export PATH=$MPJ HOME/bin:$PATH

https://www.oracle.com/java/technologies/downloads/�
https://sourceforge.net/projects/mpjexpress/files/releases/�

Installation and Execution

e Install in Windows
— Assume that the zipped file is unzipped in a folder named
“mpj_vO0_44" on the “D” drive
— Setting the path and variables in Windows 11

Right click to show “settings” menu

Choose “System” on the menu

Choose “Advanced system settings”

Choose “Environment Variables”

Choose “New” under the top section

Enter “MPJ HOME” in Variable name

Enter “D:\mpj_vO 44" in Variable value

Choose “Path” in the bottom section, and then click “Edit”
Choose “New” on “Edit environment variable”, enter
“%MPJ _HOME%\bin;”, and click *”

— The path and variables in Windows 10 can similarly be set

7

Installation and Execution

 Connect Raspberry Pl to a Laptop

— The raspberry pi needs to be on the same network as the laptop,
l.e., both are connected to the same router.

— Connect the raspberry Pi to the monitor, mouse and keyboard.
— Using the pi's terminal:
* Type: ifconfig

— If you're using ethernet, look for the address in the ethO
section

— If you’re using wifi, look for the address in the wlanO
section.

— Type sudo halt to shut down the rasperry pi.

— Open a PUTTY, enter the IP, and select “Enable X11 forwarding”
« Username is pi, and password is raspberry.

Installation and Execution

 Compilation and Execution in Windows

— Edit source code

« Many text editors can be used, such as Notepad++, Textpad,
Windows Notepad, or NetBeans

— Compile
e javac -cp .;%MPJ_HOME%/lib/mpj.jar file_name.java

— EXxecution
* %oMPJ HOME%/bin/mpjrun.bat -np 2 file_name

« Compilation and Execution in Linux
— Edit source code
« Many text editors can be used, such as pico
— Compile
 javac -cp ..:.$MPJ_HOME/lib/mpj.jar file_name.java
— EXxecution
e mpjrun.sh -np 2 file_name

Typical MPI Code Structure

EEPI Include Filéj

[gariable declarations, et{j

Begin Program

Serial code

[MPI Initialization] Parallel Code begins

 MPI Rank (process identificatioq}]

Parallel code based on rank

[ﬁPI Communications between processeéj

Parallel code based on rank

[EPI Finalize (terminateij Parallel Code ends

Serial Code

First Program

A variation on the standard hello world program - Hello World
program for multiple processes.

import mpi.*;
public class Parallel 1 Basic

{

public static void main(String args[]) throws Exception

{
int rank = O;
Int size = 0;

MPI.Init(args);

size = MPI.COMM_WORLD.Size();
rank = MPI.COMM_WORLD.Rank();

System.out.printin(*Process No."+rank+": \"Hello World!\'"");
MPI.Finalize();

11

First Program

o Sample of Execution Results

In essence, each process executes autonomously.

The messages do not necessarily print in order

If five separate processes are running on different processors,
and it cannot know beforehand which one will execute its print
statement first.

If the processes are being scheduled on the same processor
instead of multiple processors, then it is up to the operating
system to schedule the processes, and it has no preference of
any one of the processes over any other process of ours.

12

MPJ Express (©.44) 1s started in the multicore configuration
Process No.1l: "Hello World!™
Process No.@: "Hello World!™
Process No.2: "Hello World!™
Process No.4: "Hello World!™
Process No.3: "Hello World!™

pilraspberrypi: export MPJ HOME=/home/pi/mpj-v0 44
i@raspberrypi: export PATH=SMPJ HOME/bin:3PATH
if@raspberrypi:

if@raspberrypi: cd parallel

pilraspberrypi: 1s

total 8

—— 1 pi i 11 Apr 12 12:38 HelloWorld.class
. . . o
L)

12 12: HelloWorld. java
pico HelloWorld.java
if@raspberrypi:
pifraspberrypi: javac -cp .:5MPJ HOME/lib/mpj.jar HelloWor
pilraspberrypi: mpjrun.sh -np 2 HelloWorld
MPJ Express (0.44) is started in the multicore configuration
Process No.l: "Hello World!"™
Process No.0: "Hello World!™
pif@raspberrypi: mpjrun.sh -np 5 HelloWorld
MPJ Express (0.44) is started in the multicore configuration
Process No.0: "Hello World!"™
Process No.Z: "Hello World
Process No.4: "Hello World
Process No.3: "Hello World
Process No.l: "Hello World

| ™
|
H
|
H

[™

First Program

* Explanation
— Import mpi.*

* |t needs to import the “mpi” package to make available the MPI
— MPL.Init(args)

public static java.lang.String[] Init(java.lang.String[] argv)

throws MPIException
Initialize MPI.

args arguments to main method.
Java binding of the MPI operation MPI_INIT.

Throws:
MPIException

— MPI.Finalize()

public static void Finalize() throws MPIException
Finalize MPI.

Java binding of the MPI operation MPI_FINALIZE.
Throws:
. 14
MPIException

First Program

* Explanation (continued)
— MPI.COMM_WORLD
» A predefined communicator
|t allows communication with all processes that are accessible
after MPI initialization and processes are identified by their rank in
the group of MPI_COMM_WORLD.
— MPI.COMM_WORLD.Size()
» Size() returns the number of processors in the group of this
communicator
— MPIL.COMM_WORLD.Rank()
« Rank() returns the rank of the calling process in the group of this
communicator
e Separate codes in one file
— When an MPI program runs, each process receives the same code.
— However, each process can be assigned a different task.
* This allows us to embed a separate code for each process into
one file. 15

int rank = 0;
int size Q;

MPI.Init(args);

First Program

size = MPI.COMM_WORLD.Size();
rank = MPI.COMM_WORLD.Rank();

if(rank == @)
{

System.out
}

else if(rank == 1)
{

}
else if(rank == 2)

{

System.out

System.out
}
else
{

System.out
}

MPI.Finalize();

.println("How is going from process "+rank+"?");

.println("How are you from process "+rank+"?");

.println("How do you do from process "+rank+"?");

.println("Hello from process "+rank+"?");

Point-to-Point Communications and Collective Operations

— MPJ supports point-to-point communications and collective operations
e Point-to-point communications
— A communication between two processes: send and receive.
» Collective operations
— The communication that involves a group or groups of
processes, e.g., broadcast, scatter, gather, and reduce.
* Blocking communications
— A blocking send operation terminates when the message is
received by the destination.
 |.e., a program that invokes a blocking send operation will block
until the message is received by the destination.
— A blocking receive operation terminates when a message is
received by the caller.
 |.e., a program that invokes a blocking receive primitive will
block until a message is received by the caller.

17
— Example

[MPI_Send | [MPI_Recv |

| MPI_isend | | MPI_irecv |
Process A Process B
HEE _EEEEN TTTITITT1T]
Memory 4
11
Message

In a point-to-point communication, a piece of data (a message) is copied
from the memory of one process to the memory of another process.

Process A Process B

WK BT A { . Request to send

Waiting for B -[. Request to receive

Time B [-] B
Messa
Safe to &
overwrite

—

> - Work of B

Message
received

v

With a blocking send, no other operations can be executed until the communication has completed.

18
https://skirt.ugent.be/skirt9/ parallel _messaging.html

Example 3.1 A simple ‘hello world’ example usage of point-to-point communication.

#include "mpi.h"
int main(int argc, char *argvl[])
{
char message[20];
int myrank;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
if (myrank == 0) /* code for process zero */
{
strcpy(message,"Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}

else if (myrank == 1) /* code for process one */

{
MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);

}

MPI_Finalize();

return O;

[n Example 3.1, process zero (myrank = 0) sends a message to process one using the
send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,
the send operation associates an envelope with the message. This envelope specifies the
message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specity the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data 1s stored
into the recewe buffer. In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used

to return information on the message just received.
20

int rank = 0;

int size = 0;

int dest = 1;

int tag = 0;

int source = 0;

Char[] Str8={Tl—ll'!!'el'!TlT!TlT!T(:IT!T’l'! L T! Tt.l'fl'}-ll'!l'e?!!rl'!?el'};

char[] strR = new char[strS.lengthl];

MPI.Init (args) ;
rank = MPI.COMM_WORLD.Rank();
size = MPI.COMM WORLD.Size() ;

if(rank == 0)

{
MPI.COMM WORLD.Send(strS, 0O, strS.length, MPI.CHAR, dest, taqg):;
System.out.print ("Process " + rank + " sends a message: \"");
for(int i=0; i<strS.length; i++){ System.out.print(strS[i]) ;}
System.out.println("\" to Process " + dest);

}

else

{
MPI.COMM WORLD.Recv(strR, U, strS.length, MPI.CHAR, source,taqg):
System.out.print ("Process " + rank + " receives a message: \"");
for(int i=0; i<strS.length; i++){ System.out.print(strR[i]l); }
System.out.println("\" from Process " + source);

}

MPI.Finalize() ;

The syntax of the blocking send procedure is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative
integer)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

e IN: the call may use the input value but does not update the argument from the
perspective of the caller at any time during the call’s execution,

e OUT: the call may update the argument but does not use its input value,
e INOUT: the call may both use and update the argument.

22

Point-to-Point Communication — Send()

public void Send(java.lang.Object buf, buf send buffer array
Int offset, offset initial offset in send buffer
int count,
Datatype datatype, count number of items to send
Int dest, datatype datatype of each item in send buffer
int tag) throws MPIException
dest rank of destination
Blocking send operation.
tag message tag

Java binding of the MPI operation MPT_SEND.

The actual argument associated with buf must be one-dimensional array. The value offsetis a
subscript in this array, defining the position of the first item of the message.

If the datatype argument represents an MPI basic type, its value must agree with the element type of
buf---either a primitive type or a reference (object) type. If the datatype argument represents an MPI
derived type, its base type must agree with the element type of buf

Throws:

MPIException

The syntax of the blocking receive procedure is given below.

MPI_RECV(buf, count, datatype, source, tag, comm, status)

ouT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative
integer)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY _TAG (integer)

IN comm communicator (handle)

ouT status status object (status)

24

Point-to-Point Communication — Recv()

public Status Recv(java.lang.Object buf, buf receive buffer array
%nt offset, offset initial offset in receive buffer
int count,
Datatype datatype, count number of items in receive buffer
%nt SOUTCE, datatype datatype of each item in receive buffer
int tag)
throws MPIException source rank of source
Blocking receive operation. tag message lag
returns: status object

Java binding of the MPI operation MPT_RECV.

The actual argument associated with buf must be one-dimensional array. The value offsetis a
subscript in this array, defining the position into which the first item of the incoming message will be
copied.

If the datatype argument represents an MPI basic type, its value must agree with the element type of
buf---either a primitive type or a reference (object) type. If the datatype argument represents an MPI
derived type, its base type must agree with the element type of buf

Throws:

MPIException

Collective Communication

e Collective communication is defined as communication that involves a
group or groups of processes.

— Broadcast
— Gather
— Scatter
— All gather
— Reduce
— All reduce
— All total

26

Collective Operations - Broadcast

Broadcast

— Broadcast a message from one member process to all members
of a group (including itself).

MPI_Bcast

(0)m
O O O O

— Example

27

MPI_BCAST (buffer, count, datatype, root, comm)

INOUT
IN
IN
IN
IN

buffer
count
datatype
root

comm

starting address of buffer (choice)

number of entries in buffer (non-negative integer)
datatype of buffer (handle)

rank of broadcast root (integer)

communicator (handle)

28

Collective Operations - Broadcast

public void Bcast(java.lang.0Object buf,
int offset,
int count,
Datatype type,
int root)
throws MPIException

Broadcast a message from the process with rank root to all processes of the group.

buf buffer array

offset initial offset in buffer

count number of items in buffer
datatype datatype of each item in buffer
root rank of broadcast root

Java binding of the MPI operation MPI_BCST.

Throws:

MPIException

Collective Operations - Gather

Gather
— Gather data from all members of a group to one member.

MP|_Gather

O O O O
© ==

— Example

30

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf
IN sendcount
IN sendtype

ouT recvbuf

IN recvcount
IN recvtype
[N root

[N comm

starting address of send buffer (choice)

number of elements in send buffer (non-negative

integer)
datatype of send buffer elements (handle)

address of receive buffer (choice, significant only at
root)

number of elements for any single receive
(non-negative integer, significant only at root)

datatype of recv buffer elements (handle, significant

only at root)
rank of receiving process (integer)

communicator (handle)

» The n messages sent by the processes in the group are concatenated in rank

order, and the resulting message is received by the root as if by a call to

MPI_RECV(recvbuf, recvcountn, recvtype, ...).

» The receive buffer is ignored for all non-root processes.

31

Collective Operations - Gather

public void Gather(java.lang.0Object sendbuf,
int sendoffset,
int sendcount,
Datatype sendtype,
Java.lang.0Object recvbuf,
int recvoffset,
int recwvcount,
Datatype recvtype,
int root) throws MPIException

Each process sends the contents of its send buffer to the root process.

sendbuf send buffer array

sendoffset initial offset in send buffer

sendcount number of items to send

sendtype datatype of each item in send buffer
recvbuf receive buffer array

recvoffset initial offset in receive buffer
recvcount number of items to receive

recvtype datatype of each item in receive buffer
root rank of receiving process

Java binding of the MPI operation MPI_GATHER.

Throws: MPIException

Collective Operations - Scatter

Scatter

— Split a data into N parts and send each part to each member
process of a group.

MPI_Scatter

@_-
@ O O O

— Example

33

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN

IN

IN

ouT
IN

IN
IN
IN

sendbuf

sendcount

sendtype

recvbuf

recvcount

recvtype
root

comm

address of send buffer (choice, significant only at

root)

number of elements sent to each process

(non-negative integer, significant only at root)

datatype of send buffer elements (handle, significant

only at root)
address of receive buffer (choice)

number of elements in receive buffer (non-negative

integer)
datatype of receive buffer elements (handle)
rank of sending process (integer)

communicator (handle)

» The root sends a message with MPI_Send(sendbuf, sendcountn, sendtype, ...).

» This message is split into n equal segments, the ith segment is sent to the ith

process in the group, and each process receives this message as above.

» The send buffer is ignored for all non-root processes.

34

Collective Operations - Scatter

public void Scatter(java.lang.Object sendbuf,

int sendofftset,

int sendcount,

Datatype sendtype,
java.lang.0Object recvbuf,

int recvofftset,

int recvcount,

Datatype recvtype,

int root) throws MPIException

Inverse of the operation cather.

sendbu+f
sendoffset
sendcount
sendtype
recvbuf
recvoffset
recvcount
recvtype

root

send buffer array

initial offset in send buffer

number of items to send

datatype of each item in send buffer
receive buffer array

initial offset in receive buffer

number of items to receive

datatype of each item in receive buffer

rank of sending process

Java binding of the MPI operation MPI_SCATTER.

Throws: MPIException

scatter

>

gather

<

36

Collective Operations - Reduce

e Reduce

— Global reduction operations such as sum, max, min, or user-
defined functions, where the result is returned to one member
process.

MPI_Reduce

O 08 OF O

MPI_SUM
N/
Ol

— Example

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

ouT recvbuf address of receive buffer (choice, significant only at root)
IN count number of elements in send buffer (non-negative integer)
IN datatype datatype of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

If comm is an intra-communicator, MPI_REDUCE combines the elements provided in
the input buffer of each process in the group, using the operation op, and returns the
combined value in the output buffer of the process with rank root. The input buffer is
defined by the arguments sendbuf, count and datatype; the output buffer is defined by the
arguments recvbuf, count and datatype; both have the same number of elements, with the
same type. The routine is called by all group members using the same arguments for
count, datatype, op, root and comm. Thus, all processes provide input buffers of the same
length, with elements of the same type as the output buffer at the root. Each process
can provide one element, or a sequence of elements, in which case the combine operation
is executed element-wise on each entry of the sequence. For example, if the operation
is MPI_MAX and the send buffer contains two elements that are floating point numbers

(count = 2 and datatype = MPI_FLOAT), then recvbuf(l) = global max(sendbuf(1)) and
recvbuf(2) = global max(sendbuf(2)).

Collective Operations - Reduce

public void Reduce(java.lang.0Object sendbuf,
int sendoffset,
java.lang.0Object recvbuf,
int recvoffset,
int count,
Datatype datatype,
Op op,
int root) throws MPIException

Combine elements in input buffer of each process using the reduce operation, and return the combined value in
the output buffer of the root process.

sendbuf send buffer array

sendoffset initial offset in send buffer

recvbuf receive buffer array

recvoffset initial offset in receive buffer

count number of items in send buffer
datatype data type of each item in send buffer
op reduce operation

root rank of root process

Java binding of the MPI operation MPI_REDUCE.

The predefined operations are available in Java as MPI.MAX, MPI.MIN, MPI.SUM, MPI.PROD, MPI.LAND, MPI.BAND,
MPI.LOR, MPI.BOR, MPI.LXOR, MPI.BXOR, MPI.MINLOC and MPI.MAXLOC.

Throws: MPIException

Collective Operations — All_Reduce

 All Reduce

— The result is returned to all processes in a group.

— All processes from the same group participating in these
operations receive identical results.

task()

task 1

10

10

— Example

task 2

3

task 3

4 | <+— sendwf (before)

-

10

10 | -«— recvhuf (after)

-

40

MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

IN
ouT

sendbuf
recvbuf

count

datatype
op

comm

starting address of send buffer (choice)
starting address of receive buffer (choice)

number of elements in send buffer (non-negative
integer)

datatype of elements of send buffer (handle)
operation (handle)

communicator (handle)

41

public void Allreduce(java.lang.0Object sendbuf,
int sendoffset,
java.lang.0Object recvbuf,
int recvoffset,
int count,
Datatype datatype,
Op op)
throws MPIException

Same as reduce except that the result appears in receive buffer of all process in the group.

sendbuf send buffer array

sendoffset initial offset in send buffer

recvbuf receive buffer array

recvoffset initial offset in receive buffer

count number of items in send buffer
datatype data type of each item in send buffer
op reduce operation

Java binding of the MPI operation MPI_ALLREDUCE.

Throws:

MPIException

Collective Operations — All_Gather

o All Gather

— The outcome of a call to MPI_ALLGATHERC(...) is as if all
processes executed n calls to

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm)

where root=0, ..., n-1

task O task 1 task 2 task 3
1 2 3 4 o gendbuf (before)
1 1 1 1
2 2 2 2
-=—— recvbuf (after)
3 3 3 3
4 d 4 dq

— Example
43

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN

sendbuf

sendcount

sendtype
recvbuf

recvcount

recvtype

comm

starting address of send buffer (choice)

number of elements in send buffer (non-negative
integer)

datatype of send buffer elements (handle)
address of receive buffer (choice)

number of elements received from any process
(non-negative integer)

datatype of receive buffer elements (handle)

communicator (handle)

44

public void Allgather(java.lang.0Object sendbuf,
int sendoffset,
int sendcount,
Datatype sendtype,
java.lang.0Object recvbuf,
int recvoffset,
int recvcount,
Datatype recvtype)
throws MPIException

Similar to Gather, but all processes receive the result.

sendbuf send buffer array

sendoffset initial offset in send buffer

sendcount number of items to send

sendtype datatype of each item in send buffer
recvbuf receive buffer array

recvoffset initial offset in receive buffer
recvcount number of items to receive

recvtype datatype of each item in receive buffer

Java binding of the MPI operation MPT_ALLGATHER.

Throws:

MPIException

45

Collective Operations — All to ALL

 All to ALL
— Each process sends distinct data to each of the receivers.

Aglhyq| Ao Aal Ag| As Agl Bp| Co| Dol Eol Fo
sl |B.lB.lB.|B A le.lc. o e |k

o|B1|Ba|Ba| By| Bs alltoall 11 B1]Cq| Py Eq| Fy
ColCq|Ca|Ca|Cy|Cy [:::::j::} Ag| Byl Ca| Dol Eal Fy
Dol Py | Pa|Da|Dy| Dy Ag|Ba| Ca|Da|Ea| Fy
Eq| Eq|Es| Ea| Byl E Ayl Bl Cal Dyl ELlFy
Fal F1| Fa| Fal Fal|Fs Ag|Bg| C5| D5|Es| Fg

— Example

46

Collective Operations — All to ALL

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf
IN sendcount
IN sendtype
ouT recvbuf

IN recvcount
IN recvtype
IN comm

starting address of send buffer (choice)

number of elements sent to each process
(non-negative integer)

datatype of send buffer elements (handle)
address of receive buffer (choice)

number of elements received from any process
(non-negative integer)

datatype of receive buffer elements (handle)

communicator (handle)

» Each process sends distinct data to each of the receivers.

» The jth block sent from process i is received by process j and is placed in

the ith block of recvbuf.

47

public void Alltoall(java.lang.0Object sendbuf,

int sendoffset,

int sendcount,

Datatype sendtype,
java.lang.0Object recvbuf,

int recvoffset,

int recvcount,

Datatype recvtype)

throws MPIException

Extension of Allgather to the case where each process sends distinct data to each of the receivers.

sendbuf send buffer array

sendoffset initial offset in send buffer

sendcount number of items sent to each process
sendtype datatype send buffer items

recvbuf receive buffer array

recvoffset initial offset in receive buffer

recvcount number of items received from any process
recvtype datatype of receive buffer items

Java binding of the MPI operation MPI_ALLTOALL.

Throws:

MPIException

References

MPI 4.0 Standard

— https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
MPJ Express

— http://mpjexpress.org/

MPJ Express Documents

— http://mpjexpress.org/docs/javadocs/index.html

MPJ Express User Guide

— Linux: http://mpjexpress.org/docs/quides/linuxquide.pdf

— Windows: http://mpjexpress.org/docs/quides/windowsqguide.pdf
MPICH
— https://www.mpich.org/

Mpidpy
— https://mpidpy.readthedocs.io/en/stable/

49

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf�
http://mpjexpress.org/�
http://mpjexpress.org/docs/guides/linuxguide.pdf�
http://mpjexpress.org/docs/guides/windowsguide.pdf�
https://www.mpich.org/�
https://mpi4py.readthedocs.io/en/stable/�

References

DeinoMPI

— http://mpi.deino.net/

Microsoft MPI

— https://docs.microsoft.com/en-us/message-passing-
interface/microsoft-mpi

50

http://mpi.deino.net/�

	An Introduction to MPI Parallel Programming with Java
	What is MPI?
	Background Information
	Background Information
	Background Information
	Installation and Execution
	Installation and Execution
	Installation and Execution
	Installation and Execution
	幻灯片编号 10
	First Program
	First Program
	幻灯片编号 13
	First Program
	First Program
	First Program
	Point-to-Point Communications and Collective Operations
	幻灯片编号 18
	幻灯片编号 19
	幻灯片编号 20
	幻灯片编号 21
	幻灯片编号 22
	Point-to-Point Communication – Send()
	幻灯片编号 24
	Point-to-Point Communication – Recv()
	Collective Communication
	Collective Operations - Broadcast
	幻灯片编号 28
	Collective Operations - Broadcast
	Collective Operations - Gather
	幻灯片编号 31
	Collective Operations - Gather
	Collective Operations - Scatter
	幻灯片编号 34
	Collective Operations - Scatter
	幻灯片编号 36
	Collective Operations - Reduce
	幻灯片编号 38
	Collective Operations - Reduce
	Collective Operations – All_Reduce
	幻灯片编号 41
	幻灯片编号 42
	Collective Operations – All_Gather
	幻灯片编号 44
	幻灯片编号 45
	Collective Operations – All_to_ALL
	Collective Operations – All_to_ALL
	幻灯片编号 48
	References
	References

