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Copying and Credits

> Slides (and all ns-3 documentation) are provided by the 
authors under Creative Commons CC-BY-SA-4.0
– https://creativecommons.org/licenses/by-sa/4.0/

> Credit is due to ns-3’s long list of Wi-Fi module maintainers
– Mathieu Lacage, Nicola Balco, Ghada Badawy, Getachew Redietab, 

Matias Richart, Stefano Avallone (current), Sebastien Deronne
(current)

> This tutorial development was funded by NSF award CNS-
2016379

https://creativecommons.org/licenses/by-sa/4.0/
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Goals of this tutoral

> Explain why you might use ns-3 to study or learn about Wi-Fi 
networking

> Illustrate some basic aspects of Wi-Fi
> Show how you can get started with ns-3 Wi-Fi simulations 

already written by others
> Answer your questions
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What is ns-3?

> ns-3 is a leading open source, packet-level network simulator oriented 
towards network research, featuring a high-performance core enabling 
parallelization across a cluster (for large scenarios), ability to run real 
code, and interaction with testbeds

Runs	on	a
single	machine

or	partitioned
across	a	cluster
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The ns-3 research workflow
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Outline of this tutoral

The tutorial will be example driven
1. Getting ns-3 up and running
2. Basic concepts of ns-3’s discrete-event simulation
3. Detailed walkthrough of a simple Wi-Fi example program
4. Examples and descriptions of additional Wi-Fi model 

features
5. Progressing from examples to validation to developing new 

algorithms
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Prerequisites

> Some experience with command-line coding on Linux or 
macOS

> Some experience with or understanding of C++
> Basic understanding of Wi-Fi networks
> New users are recommended  to work through the ns-3 

tutorial
– HTML: https://www.nsnam.org/docs/tutorial/html/index.html
– PDF:  https://www.nsnam.org/docs/tutorial/ns-3-tutorial.pdf

https://www.nsnam.org/docs/tutorial/html/index.html
https://www.nsnam.org/docs/tutorial/ns-3-tutorial.pdf


8

Obtaining ns-3

> Most resources are linked from the ns-3 main website at 
https://www.nsnam.org

> ns-3 is developed and maintained on GitLab.com at 
https://gitlab.com/nsnam/ns-3-dev

> We will use a pre-release version of ns-3.36 (about to be 
released):                                   
https://www.nsnam.org/release/ns-allinone-3.36.rc1.tar.bz2

> If you are using an earlier or later version of ns-3, please be 
aware that some things may have changed

https://www.nsnam.org/
https://gitlab.com/nsnam/ns-3-dev
https://www.nsnam.org/release/ns-allinone-3.36.rc1.tar.bz2
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Building ns-3

> (Demo) Download ns-3
> (Demo) Configure ns-3
> (Demo) Build ns-3
> (Demo) Run programs

For more information, read the tutorial Quick Start:
https://www.nsnam.org/docs/tutorial/html/quick-start.html

https://www.nsnam.org/docs/tutorial/html/quick-start.html
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Discrete-event simulation basics

We are trying to represent the operation of a network within a 
single C++ program
> We need a notion of virtual time and of events that occur at 

specified (virtual) times
> We need a data structure (scheduler) to hold all of these 

events in temporal order
> We need an object (simulator) to walk the list of events and 

execute them at the correct virtual time
> We can choose to ignore things that conceptually might occur 

between our events of interest, focusing only on the 
(discrete) times with interesting events
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Discrete-event simulation basics (cont.)

• Simulation time moves in discrete jumps from event to event
• C++ functions schedule events to occur at specific simulation 

times
• A simulation scheduler orders the event execution
• Simulation::Run() executes a single-threaded event list
• Simulation stops at specified time or when events end

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time
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ns-3 simulation basics and terminology

> A simulation ‘run’ or ‘replication’ usually consists of the 
following workflow

1. Before the notional ‘time 0’, create the scenario objects and pre-
populate the scheduler with some initial events

2. Define stopping criteria; either a specific future virtual time, or 
when certain criteria are met

3. Start the simulation (which initializes objects, at ‘time 0’)

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time

Time 0 Stop at time > 0

Before time 0,
create and configure
objects, and insert
some events into
the schedule
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Virtual time in ns-3

> Time is stored as a large integer in ns-3
– Minimize floating point discrepancies across platforms

> Special Time classes are provided to manipulate time (such as 
standard arithmetic operators)

> Default time resolution is nanoseconds, but can be set to 
other resolutions
– Note:  Changing resolution is not well used/tested

> Time objects can be set by floating-point values and can 
export floating-point values
double timeDouble = t.GetSeconds();
– Best practice is to avoid floating point conversions where possible and 

use Time arithmetic operators
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Key building blocks:  Callback and function pointer

> C++ methods are often invoked directly on objects

Unlike CommandLine.Parse(), 

we more generally need to

call functions at some

future (virtual) time.

Some program element

could assign a function

pointer, and a (later)

program statement could call

(execute) the method

Program excerpt:

src/core/examples/sample-simulator.cc (lines 103-118)
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Events in ns-3

> Events are just functions (callbacks) that execute at a 
simulated time
– nothing is special about functions or class methods that 

can be used as events

> Events have IDs to allow them to be cancelled or to 
test their status
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Simulator and Scheduler

> The Simulator class holds a scheduler, and provides 
the API to schedule events, start, stop, and cleanup 
memory

> Several scheduler data structures (calendar, heap, 
list, map) are possible

> "Realtime" simulation implementation aligns the 
simulation time to wall-clock time
– two policies (hard and soft limit) available when the 

simulation and real time diverge
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(Demo) sample-simulator.cc

Program excerpt:
src/core/examples/sample-simulator.cc (lines 103-131)
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CommandLine arguments

> Add CommandLine to your program if you want command-
line argument parsing

> Passing --PrintHelp to programs will display command line 
options, if CommandLine is enabled

./ns3 run ”sample-simulator --PrintHelp"
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Random Variables and Run Number

• Many ns-3 objects use random variables to model random 
behavior of a model, or to force randomness in a protocol
• e.g. random placement of nodes in a topology

• Many simulation uses involve running a number of 
independent replications of the same scenario, by changing 
the random variable streams in use
– In ns-3, this is typically performed by incrementing the simulation run 

number
./ns3 run ‘sample-simulator --RngRun=2’

NS_GLOBAL_VALUE=“RngRun=2” ./ns3 run sample-simulator
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Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, Triangular, Zipf, Zeta, 

Deterministic, Empirical

from src/core/examples/sample-rng-plot.py
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Discrete-event simulation basics

> Scheduler, events, simulator, random variables (✓)
> Packets
> Nodes, NetDevices
> MobilityModel/Position
> Wireless channels
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(Demo) wifi-simple-infra.cc

./ns3 run wifi-simple-infra

> Program output (pcap)
> View Wireshark
> GenerateTraffic()
> ap-wifi-mac.cc:  packet->AddHeader (beacon);

APSTA

Beacon(s)

Assoc. req

Broadcast frame

ACK
Assoc. resp

ACK

Time
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Packets

> Figure source:  ns-3 Model Library documentation
> Key methods:  AddHeader(), RemoveHeader()
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Nodes, Applications, NetDevices

> Most simulations involve packet exchanges such as depicted 
below

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s)
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Mobility and position

> ns-3 position is represented on a 3D Cartesian (x,y,z) coordinate system

> The MobilityHelper combines a mobility model and position allocator.

> Position Allocators setup initial position of nodes (only used when 
simulation starts):
– List: allocate positions from a deterministic list specified by the user;

– Grid: allocate positions on a rectangular 2D grid (row first or column first);

– Random position allocators: allocate random positions within a selected form 
(rectangle, circle, …).

> Mobility models specify how nodes will move during the simulation:
– Constant: position, velocity or acceleration;

– Waypoint: specify the location for a given time (time-position pairs);

– Trace-file based: parse files and convert into ns-3 mobility events, support 
mobility tools such as SUMO, BonnMotion (using NS2 format) , TraNS



26

Propagation

> Propagation module defines:
– Propagation loss models: 

Calculate the Rx signal power considering the Tx signal power and the 
respective Rx and Tx antennas positions.

– Propagation delay models: 
Calculate the time for signals to travel from the TX antennas to RX 
antennas.

> Propagation delay models almost always set to:
– ConstantSpeedPropagationDelayModel: In this model, the signal 

travels with constant speed (defaulting to speed of light in vacuum)
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Propagation (cont.)

> Propagation loss models:
– Many propagation loss models are implemented:

üAbstract propagation loss models:
FixedRss, Range, Random, Matrix, …

üDeterministic path loss models:
Friis, LogDistance, ThreeLogDistance, TwoRayGround, …

üStochastic fading models:
Nakagami, Jakes, …
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Propagation (cont.)

– A propagation loss model can be “chained” to another 
one, making a list. The final Rx power takes into account all 
the chained models. 
Example: path loss model + shadowing model + fading 
model

Figure source:  Unknown
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Wifi channels

> Two options are supported:
1. YansWifiChannel (simple single-band model)

– Use if there is no frequency-selective fading model, and if there is no 
interference from foreign sources

– Default YansWifiChannelHelper will add a 
“LogDistancePropagationLossModel” with path loss exponent value 
of 3

2. SpectrumChannel (fine-grained band decomposition)
– Use if more detailed frequency selective models are needed, or in a 

mixed-signal environment
– Default SpectrumWifiChannelHelper wil add a 

“FriisSpectrumPropagationLossModel” (power falls as square of 
distance)
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SpectrumChannel illustration

> Figure source:  ns-3 Model Library documentation
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(Demo) wifi-simple-infra.cc

> wifi-simple-infra.cc uses a special ‘FixedRss’ propagation loss 
model that enforces that the received signal strength (RSS) is 
a configured value

> Packet delivery is governed by a preamble detection model 
and a Wi-Fi error model

APSTA frames

Received with a
fixed RSSReceived with a

fixed RSS
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Signal strength and Wi-Fi

> dBm is reference to 
decibels over 1 mW

> 0 dBm = 1 mW
> +/- 3 dB = */÷ a factor of 

2 on a linear scale
> +/- 10 dB = */÷ a factor 

of 10 on a linear scale

-101 dBm: Thermal noise floor
for 20 MHz at room temp.

-90 dBm: Minimal received
power level in typical cards

-82 dBm: Required “Preamble
Detection” threshold

-62 dBm: Required “Energy
Detection” threshold

16 dBm: Maximum Wi-Fi transmit
power at 5 GHz

-94 dBm: Noise power including
default 7 dB WifiPhy noise figure
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Signal to noise ratio

> (Signal + gain) power/(Noise + interference) power
> Typically expressed in decibels (dB)
> 0 dB -> signal power equals the noise power (ratio of 1)
> Different modulations require different levels of SNR to 

decode successfully
> Gains (e.g. directional antennas, amplifiers) can contribute to 

the numerator
> Propagation losses reduce the signal power at the receiver
> Thermal noise and noise figure contribute to the denominator
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Interference handling and error models

> Interference (if any) is handled by adding the interfering 
signal’s power to the noise power

> Figure source:  ns-3 Model Library documentation
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Error models

> DSSS error models are derived analytically

– See:  https://www.nsnam.org/~pei/80211b.pdf

> OFDM error models are derived from MATLAB(TM) Wireless LAN 

System Toolbox

– See: https://depts.washington.edu/funlab/wp-

content/uploads/2017/05/Technical-report-on-validation-of-error-

models-for-802.11n.pdf

> Perror (probability of packet error) 

= 1 - (Psuccess1)(Psuccess2)(Psuccess3)... (for all chunks)

> Psuccess (N-bit chunk at given BER)

= 1 - (1 - BER)^N

https://www.nsnam.org/~pei/80211b.pdf
https://depts.washington.edu/funlab/wp-content/uploads/2017/05/Technical-report-on-validation-of-error-models-for-802.11n.pdf
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Example PER curves

> Figure from ‘examples/wireless/wifi-dsss-validation.cc’
$ ./ns3 run wifi-dsss-validation
$ gnuplot frame-success-rate-dsss.plt
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Wi-Fi evolution

802.11

Rates

1,2Mbps

Freq.

2.4 GHz

Modulation

DSSS

Other

802.11b
1,2,5.5,11
Mbps

2.4 GHz DSSS/CCK

802.11a 6..54Mbps 5 GHz OFDM

22 MHz overlapping channels

22 MHz overlapping channels

20 MHz channels

802.11g 1..54Mbps 2.4/5GHz OFDM in 5 GHz, DSSS/CCK in 2.4 GHz

802.11n 6..600Mbps 2.4/5GHz OFDM MIMO, WMM, 20/40 MHz

802.11ac up to 7Gbps 5 GHz OFDM beamforming, DL MU-MIMO
20/40/80/160 MHz

802.11ax up to 9.6Gbps 2.4/5/6
GHz

OFDM/
OFDMA

DL/UL MU-MIMO, 
spatial reuse, TWT

802.11be up to 40Gbps 2.4/5/6
GHz

OFDM/
OFDMA

320MHz, AP coordination,
TSN, MLO, ...
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Preamble detection and frame capture models

> In practice, a WiFi frame is first detected (and synchronized) 
via a PLCP preamble field

Legacy preambles  HT/VHT/HE preambles                              Data

Preambles                                                  Data

HT/VHT/HE preambles                              DataL-STF L-LTF L-SIG
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Preamble detection and frame capture models

> A ‘ThresholdPreambleDetectionModel’ is configured by 
default by the Wi-Fi helpers
– ”Threshold” attribute:  default 4 dB
– “MinimumRssi” attribute:   default -82 dBm

> A ‘SimpleFrameCaptureModel’ is available but must be 
added (WifiHelper::SetFrameCaptureModel())
– Only enabled for YansWifiPhyHelper
– “Window” attribute:  default 16us
– “Margin” attribute:  default 5 dB
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Throughput vs distance for 802.11n modulation

./ns3 run ‘wifi-80211n-mimo --preambleDetection=0’
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Throughput vs distance for 802.11n modulation

./ns3 run ‘wifi-80211n-mimo --preambleDetection=1’
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Bianchi analysis/validation

> Analytical work by Bianchi [*] bounded the performance of 
the Wi-Fi DCF under saturating traffic

> ns-3 simulations (src/wifi/examples/wifi-bianchi.cc) have 
been used to validate the simulator against this analysis, for 
many versions of the Wi-Fi standard 
– accounting for differences in overhead and operation

[*] G. Bianchi, "Performance analysis of the IEEE 802.11 distributed 
coordination function," in IEEE Journal on Selected Areas in 
Communications, vol. 18, no. 3, pp. 535-547, March 2000
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Example Bianchi plot

> Default results for 802.11a, 5 to 50 nodes, adhoc network
> ./ns3 run ‘wifi-bianchi’
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ConstantRateWifiManager

> Many ns-3 programs disable dynamic rate control and provide 
specific rates for both the data and control/management 
frames

> Sample code is shown below:
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Ideal rate control

> ns-3 contains an idealized dynamic rate control manager 
(IdealWifiManager) that adjusts the sending rate based on 
the last SNR received on the remote STA
– The sender has access to the receiver’s statistics
– The highest throughput MCS that is supported by the provided SNR is 

selected
– A configurable BER threshold (default 1e-6) is used for deciding 

whether an MCS (SNR) is viable
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Minstrel rate control

> Overall philosophy is that it is hard to pick a rate based on 
available SNR figures from Linux drivers, and instead a better 
approach is to search for good rates via trial-and-error

> Minstrel dedicates 10% of its packets to probe for other rates 
that might offer an improved performance
– called ”Lookaround” rates
– makes use of an exponentially weighted moving average (EWMA) on 

packet success statistics
– Details are available in ns-3, or Yin et al, “Rate control in the 

mac80211 framework: Overview, evaluation and improvements,” 
Computer Networks 81, 2015.

> ns-3 contains MinstrelWifiManager for legacy 802.11 
standards, and MinstrelHtWifiManager for 802.11n/ac
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Example Minstrel plot

> Compare short and long guard interval performance for 
MinstrelHt at 802.11n-5GHz, 20 MHz channel, 1 stream

./ns3 run 'wifi-manager-example --standard=802.11n-5GHz --
serverShortGuardInterval=800 --clientShortGuardInterval=800 --
wifiManager=MinstrelHt'
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Example Ideal plot

> 802.11ax in 6GHz with IdealWifiManager
./ns3 run ’wifi-manager-example --standard=802.11ax-6GHz’
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Wi-Fi 6 (802.11ax) support

> 11ax frame formats
> OBSS PD spatial reuse for dense networks
> DL OFDMA and UL OFDMA (including support for the MU 

EDCA Parameter Set)
> Multi-user management frames (e.g. MU-BAR)
> Round-robin multi-user scheduler
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Upcoming Wi-Fi extensions

Initial Wi-Fi 7 (802.11be) components are under development by 
Stefano Avallone and Sebastien Deronne
> New frame formats, support for new modulation types, wider 

channels
> Multi-link operation (MLO)
> Multi-AP coordination
Finish integration of new fast fading MIMO error models

– https://www.nsnam.org/research/wns3/wns3-2021/tutorials/

Integrate 802.11ad (WiGig) extensions
– https://gitlab.com/sderonne/ns-3-dev/-/tree/wigig_module

https://www.nsnam.org/research/wns3/wns3-2021/tutorials/
https://gitlab.com/sderonne/ns-3-dev/-/tree/wigig_module
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Examples to review

> wifi-simple-infra.cc
> wifi-80211n-mimo.cc
> wifi-hidden-terminal.cc
> wifi-manager-example.cc
> wifi-spatial-reuse.cc
> wireless-animation.cc (netanim)
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Conduct Research with ns-3 Wi-Fi models



How to use ns-3 Wi-Fi models to conduct your own research?

• Phase 1: Validate the modules in ns-3 
§ Start with the existing examples
§ System level validation 
§ Compare with well known theoretical model/other simulation tools

• Phase 2: Build new scenarios and explore with different 
parameters
§ Investigate the impact on different parameters: power, moving speed..
§ Build more complex scenarios : single cell->multi cells
§ Evaluate the performance and verify the guess

• Phase 3: Build and test new algorithms
§ Machine learning algorithms in wireless communication
§ Optimization approaches
§ New modules and new features



> Validation Examples

Phase 1: Validation work for Wi-Fi modules in ns-3 

Validate the development of ns-3 Wi-Fi module against the well-known analytical model for 
different network setups.

• DCF validation for different Wi-Fi standards: 802.11 a/b/g/ax
• https://gitlab.com/nsnam/ns-3-dev/-/blob/master/src/wifi/examples/wifi-bianchi.cc

• 802.11ax OFDMA validation [1]:
• https://github.com/signetlabdei/ofdma-validation

[1] Davide Magrin, Stefano Avallone, Sumit Roy, and Michele Zorzi. 2021. Validation of the ns-3 802.11ax OFDMA 
implementation. In Proceedings of the Workshop on ns-3 (WNS3 '21). Association for Computing Machinery, New 
York, NY, USA, 1–8. DOI:https://doi.org/10.1145/3460797.3460798

https://gitlab.com/nsnam/ns-3-dev/-/blob/master/src/wifi/examples/wifi-bianchi.cc
https://github.com/signetlabdei/ofdma-validation


> Basic DCF validation recap

Phase 1: Validate the modules in ns-3

• Simulation setup:
• Infrastructure mode: One AP and multiple stations
• Traffic: Uplink traffic only.
• Stations locate at the same distance (close) to the AP
• Transmission with same power and MCS
• Saturation mode

• Key assumptions for the analytical model:
• No PHY errors, so packet losses only caused by the collision
• Stations are all the same

• AP and stations may run on different powers
• Increase distances, PHY error may also occur and change the backoff window procedure.



> 6 GHz Power Role and Unequal Power Setup [2]

Phase 2: Build new scenarios and explore with different 
parameters

• U.S Federal Communications Commission (FCC) has adopted new rules to open the 6 GHz bands 
for unlicensed access 

• The new ruling limits operation by a Power Spectral Density (PSD) limit in 6 GHz bands that differs 
from the total average power independent of the channel bandwidth in 5 GHz bands. 

• Unequal power of the Access Points (AP) and stations (STA) also impact the system performance 
in wireless local area networks (WLANs).

[2] Hao Yin, Sumit Roy, and Sian Jin. 2022. IEEE WLANs in 5 vs 6 GHz: A Comparative Study. To be published in the Workshop on ns-3 (WNS3 ‘22).



> 6 GHz Power Rule and Unequal Power Setup

Phase 2: Build new scenarios and explore with different 
parameters

• How can we build the new scenario to test these two setups? (Demo and codes)
• Downlink setups
• Power rules



> 6 GHz Power Rule and Unequal Power Setup

Phase 2: Build new scenarios and explore with different 
parameters

• 6 GHz power rule results

- As the distance increases, the received power and SNR decreases, the packet error rate increases, 
and the aggregated throughput drops. 

- As the channel bandwidth increases, the transmission range of the 5 GHz band decreases while 
the transmission range in the 6 GHz band remains the same

Codes: https://github.com/Mauriyin/ns3

20 MHz 40 MHz 80 MHz

https://github.com/Mauriyin/ns3


> 6 GHz Power Rule and Unequal Power Setup

Phase 2: Build new scenarios and explore with different 
parameters

• Unequal Power results

• 1st Drop:  STA PER increases. STA power decreases to margin, and the STA has some packets 
successfully trasmitted but not to 0 (still 5 nodes, backoff window [Cwmin, CWmax]);

• Increase:  All the STAs’ tpt drops to 0 (backoff window Cwmax, lower collision probability), 
only AP sending packets successfully

• 2nd Drop:  AP power decreases to margin, AP PER increases



> Multi-BSS Setup [3]

Phase 2: Build new scenarios and explore with different 
parameters

2 Overlapping BSS:
• ALL STAs are in the same position for each BSS
• CCA: -82 dBm, TX power: 20 dBm
• Log distance path loss (PL) model -> PL is a function of distance: PL(dis)
• Change d and r to simulate different cases.
• Uplink Only

AP1 AP2

Axis:
AP1 (0, 0)    AP2 (d, 0)
STA1 (0, r)    STA2 (d, r)

SNIR = 
!"#

(!%&'()*+,)

./0 = .20 − .4 5
.*6 = .20 − .4( 57 + 97)

SINR vs PER
Conditions that 2 STAs can transmit at the same time:
• 2 STAs are in different BSS
• SINR > Threshold(MCS), for example, we need around 5 dB SNIR for MCS 0

[3] R. Kajihara, H. Wenkai, L. Lanante, M. Kurosaki and H. Ochi, "Performance Analysis Model of IEEE 802.11 CSMA/CA for Multi-
BSS Environment," 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020, 
pp. 1-7, doi: 10.1109/PIMRC48278.2020.9217235.



> Multi-BSS Setup

Phase 2: Build new scenarios and explore with different 
parameters

Case 1: Equivalent case:
• Setup: r = 8m, d = 5m

§ Every node is in the carrier sensing range (can sense each other)

§ SINR = 2 dB -> No simultaneous transmission for ALL MCS

§ Expectation: 2 BSS is equivalent to one larger cell

• Results:

Total 50 STAs

Parameters Value

!"# -61.6 dBm

!$% -64.6 dBm

Noise -128 dBm

SINR 2 dB

• 2 BSS is equivalent to one larger cell

• All the results are validated against 

the Bianchi model

Codes: https://gitlab.com/haoyinyh/ns-3-dev/-/tree/multibss

https://gitlab.com/haoyinyh/ns-3-dev/-/tree/multibss


> Multi-BSS Setup

Phase 2: Build new scenarios and explore with different 
parameters

Case 2: Simultaneous transmission 
• Setup: r = 10m, d = 20m

§ Every node is in the carrier sensing range (can sense each other)
§ SINR = 12 dB -> Can support simultaneous transmission at MCS 0/1/2
§ Expectation: 2 BSS has larger throughput in MCS 0/1/2 than one large cell

• Results:

Total 50 STAs

Parameters Value

!"# -65 dBm

!$% -77.2 dBm

Noise -128 dBm

SINR 12 dB

• Simultaneous transmission happens 
when MCS < 3

• The multi-BSS throughput is larger when 
MCS < 3

• Large single BSS throughput is also 
validated against the Bianchi model 
(similar with case 1)



> Multi-BSS Setup

Phase 2: Build new scenarios and explore with different 
parameters

Case 3: Simultaneous transmission 
• Setup: r = 3m, d = 20m

• Every node is in the carrier sensing range (can sense each other)
§ SINR = 28.9 dB -> Can support simultaneous transmission at all MCSs
§ Expectation: 2 BSS has larger throughput in all MCSs than one large cell

• Results:

Total 50 STAs

Parameters Value

!"# -46.7 dBm
!$% -75 dBm

Noise -128 dBm
SINR 28.9 dB

• Simultaneous transmission happens 
for all MCSs

• The multi-BSS throughput is larger
• Large single BSS throughput is also 

validated against the Bianchi model 
(similar with case 1)



> Wi-Fi Rate Control Algorithms [4]

Phase 3: Build and test new algorithms

[4] A. Krotov, A. Kiryanov and E. Khorov, "Rate Control With Spatial Reuse for Wi-Fi 6 Dense Deployments," in 
IEEE Access, vol. 8, pp. 168898-168909, 2020, doi: 10.1109/ACCESS.2020.3023552.

- TS: MAB algorithm, using binomial distribution to approximate the success 
probability and then select the MCS (arm). Using Thompson sampling (TS) 
approach to calculate reward.
- PF: Estimate the channel SINR, then using TS to approach to approximate the 
SINR distribution, and then select the MCS based on the SINR.
- OBSS PD: Using OBSS PD to enable spatial reuse setup. The same way to 
calculate the OBSS PD: Threshold = Average RSSI − Margin (Margin is a positive 
value that considers channel quality fluctuations).

Benefits from RL (reinforcement learning):
- Explore the optimal way to search the (sub-)optimal setup <-> randomly 

search in traditional ways .
- Learn from the environment -> ‘remember’ similar situations.
- Capable for the optimization in large and complex scenario.

Deep RL? MAB?



> Simulation Scenario

Phase 3: Build and test new algorithms

• Created by modifying the file “ examples/tutorials/third.cc” in ns-3.

• The topology contains 10 wired LAN nodes connected to each other and  
one of the nodes is connected to the stationary Access Point(AP) of the  
Wireless Network using a point to point link with 50Mbps bandwidth  
and 10ms delay.

• Reference code: 
https://github.com/DodiyaParth/802.11ac_compatible_RAAs_Performa  
nce_Analysis_in_NS3

Simulation Scenario [3]

[5] Huang, Tingpei, et al. "A comparative simulation study of rate adaptation algorithms in wireless LANs." International Journal of  
Sensor Networks 14.1 (2013): 9-21.

https://github.com/DodiyaParth/802.11ac_compatible_RAAs_Performance_Analysis_in_NS3


> Simulation

Phase 3: Build and test new algorithms

• Calculate the throughput every second with  different 

rate control algorithms.

• Change the total node numbers and  simulation 

duration to compare the results.

Error Rate Model NistErrorRateModel

Channel Delay Model

ConstantSpeedPropagationDelay  

Model

Channel Loss Model

LogDistancePropagationLossMode  l

MAC(Station/AP) Type Sta WifiMac/ ApWifiMac

Application Data Rate 1 Mbps

Packet Size 1024 bytes

Mobility Model

RandomDirectional2dMobilityMo  del

Mobility Speed

Random Variable : U(15.0 mps,

20.0 mps)

Simulation Topology of  

Wifi nodes

Grid, rectangle range: (-100m,  

100m, -100m, 100m)
Under same scenario, how’s the performance of 

different algorithms.

Codes: https://github.com/hust-diangroup/ns3-ai

https://github.com/hust-diangroup/ns3-ai


Thank you!


