
Wi-Fi simulations with ns-3

Instructors: Tom Henderson and Hao Yin
ACMSE Conference
April 20, 2022

2

Copying and Credits

> Slides (and all ns-3 documentation) are provided by the
authors under Creative Commons CC-BY-SA-4.0
– https://creativecommons.org/licenses/by-sa/4.0/

> Credit is due to ns-3’s long list of Wi-Fi module maintainers
– Mathieu Lacage, Nicola Balco, Ghada Badawy, Getachew Redietab,

Matias Richart, Stefano Avallone (current), Sebastien Deronne
(current)

> This tutorial development was funded by NSF award CNS-
2016379

https://creativecommons.org/licenses/by-sa/4.0/

3

Goals of this tutoral

> Explain why you might use ns-3 to study or learn about Wi-Fi
networking

> Illustrate some basic aspects of Wi-Fi
> Show how you can get started with ns-3 Wi-Fi simulations

already written by others
> Answer your questions

4

What is ns-3?

> ns-3 is a leading open source, packet-level network simulator oriented
towards network research, featuring a high-performance core enabling
parallelization across a cluster (for large scenarios), ability to run real
code, and interaction with testbeds

Runs	on	a
single	machine

or	partitioned
across	a	cluster

5

The ns-3 research workflow

6

Outline of this tutoral

The tutorial will be example driven
1. Getting ns-3 up and running
2. Basic concepts of ns-3’s discrete-event simulation
3. Detailed walkthrough of a simple Wi-Fi example program
4. Examples and descriptions of additional Wi-Fi model

features
5. Progressing from examples to validation to developing new

algorithms

7

Prerequisites

> Some experience with command-line coding on Linux or
macOS

> Some experience with or understanding of C++
> Basic understanding of Wi-Fi networks
> New users are recommended to work through the ns-3

tutorial
– HTML: https://www.nsnam.org/docs/tutorial/html/index.html
– PDF: https://www.nsnam.org/docs/tutorial/ns-3-tutorial.pdf

https://www.nsnam.org/docs/tutorial/html/index.html
https://www.nsnam.org/docs/tutorial/ns-3-tutorial.pdf

8

Obtaining ns-3

> Most resources are linked from the ns-3 main website at
https://www.nsnam.org

> ns-3 is developed and maintained on GitLab.com at
https://gitlab.com/nsnam/ns-3-dev

> We will use a pre-release version of ns-3.36 (about to be
released):
https://www.nsnam.org/release/ns-allinone-3.36.rc1.tar.bz2

> If you are using an earlier or later version of ns-3, please be
aware that some things may have changed

https://www.nsnam.org/
https://gitlab.com/nsnam/ns-3-dev
https://www.nsnam.org/release/ns-allinone-3.36.rc1.tar.bz2

9

Building ns-3

> (Demo) Download ns-3
> (Demo) Configure ns-3
> (Demo) Build ns-3
> (Demo) Run programs

For more information, read the tutorial Quick Start:
https://www.nsnam.org/docs/tutorial/html/quick-start.html

https://www.nsnam.org/docs/tutorial/html/quick-start.html

10

Discrete-event simulation basics

We are trying to represent the operation of a network within a
single C++ program
> We need a notion of virtual time and of events that occur at

specified (virtual) times
> We need a data structure (scheduler) to hold all of these

events in temporal order
> We need an object (simulator) to walk the list of events and

execute them at the correct virtual time
> We can choose to ignore things that conceptually might occur

between our events of interest, focusing only on the
(discrete) times with interesting events

11

Discrete-event simulation basics (cont.)

• Simulation time moves in discrete jumps from event to event
• C++ functions schedule events to occur at specific simulation

times
• A simulation scheduler orders the event execution
• Simulation::Run() executes a single-threaded event list
• Simulation stops at specified time or when events end

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time

12

ns-3 simulation basics and terminology

> A simulation ‘run’ or ‘replication’ usually consists of the
following workflow

1. Before the notional ‘time 0’, create the scenario objects and pre-
populate the scheduler with some initial events

2. Define stopping criteria; either a specific future virtual time, or
when certain criteria are met

3. Start the simulation (which initializes objects, at ‘time 0’)

Execute a function
(may generate additional events)

Advance the virtual time
to the next event (function)

Virtual time

Time 0 Stop at time > 0

Before time 0,
create and configure
objects, and insert
some events into
the schedule

13

Virtual time in ns-3

> Time is stored as a large integer in ns-3
– Minimize floating point discrepancies across platforms

> Special Time classes are provided to manipulate time (such as
standard arithmetic operators)

> Default time resolution is nanoseconds, but can be set to
other resolutions
– Note: Changing resolution is not well used/tested

> Time objects can be set by floating-point values and can
export floating-point values
double timeDouble = t.GetSeconds();
– Best practice is to avoid floating point conversions where possible and

use Time arithmetic operators

14

Key building blocks: Callback and function pointer

> C++ methods are often invoked directly on objects

Unlike CommandLine.Parse(),

we more generally need to

call functions at some

future (virtual) time.

Some program element

could assign a function

pointer, and a (later)

program statement could call

(execute) the method

Program excerpt:

src/core/examples/sample-simulator.cc (lines 103-118)

15

Events in ns-3

> Events are just functions (callbacks) that execute at a
simulated time
– nothing is special about functions or class methods that

can be used as events

> Events have IDs to allow them to be cancelled or to
test their status

16

Simulator and Scheduler

> The Simulator class holds a scheduler, and provides
the API to schedule events, start, stop, and cleanup
memory

> Several scheduler data structures (calendar, heap,
list, map) are possible

> "Realtime" simulation implementation aligns the
simulation time to wall-clock time
– two policies (hard and soft limit) available when the

simulation and real time diverge

17

(Demo) sample-simulator.cc

Program excerpt:
src/core/examples/sample-simulator.cc (lines 103-131)

18

CommandLine arguments

> Add CommandLine to your program if you want command-
line argument parsing

> Passing --PrintHelp to programs will display command line
options, if CommandLine is enabled

./ns3 run ”sample-simulator --PrintHelp"

19

Random Variables and Run Number

• Many ns-3 objects use random variables to model random
behavior of a model, or to force randomness in a protocol
• e.g. random placement of nodes in a topology

• Many simulation uses involve running a number of
independent replications of the same scenario, by changing
the random variable streams in use
– In ns-3, this is typically performed by incrementing the simulation run

number
./ns3 run ‘sample-simulator --RngRun=2’

NS_GLOBAL_VALUE=“RngRun=2” ./ns3 run sample-simulator

20

Random Variables

• Currently implemented distributions
– Uniform: values uniformly distributed in an interval
– Constant: value is always the same (not really random)
– Sequential: return a sequential list of predefined values
– Exponential: exponential distribution (poisson process)
– Normal (gaussian), Log-Normal, Pareto, Weibull, Triangular, Zipf, Zeta,

Deterministic, Empirical

from src/core/examples/sample-rng-plot.py

21

Discrete-event simulation basics

> Scheduler, events, simulator, random variables (✓)
> Packets
> Nodes, NetDevices
> MobilityModel/Position
> Wireless channels

22

(Demo) wifi-simple-infra.cc

./ns3 run wifi-simple-infra

> Program output (pcap)
> View Wireshark
> GenerateTraffic()
> ap-wifi-mac.cc: packet->AddHeader (beacon);

APSTA

Beacon(s)

Assoc. req

Broadcast frame

ACK
Assoc. resp

ACK

Time

23

Packets

> Figure source: ns-3 Model Library documentation
> Key methods: AddHeader(), RemoveHeader()

24

Nodes, Applications, NetDevices

> Most simulations involve packet exchanges such as depicted
below

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

ApplicationApplication

Protocol
stack

Node

NetDeviceNetDevice

Sockets-like
API

Channel

Channel

Packet(s)

25

Mobility and position

> ns-3 position is represented on a 3D Cartesian (x,y,z) coordinate system

> The MobilityHelper combines a mobility model and position allocator.

> Position Allocators setup initial position of nodes (only used when
simulation starts):
– List: allocate positions from a deterministic list specified by the user;

– Grid: allocate positions on a rectangular 2D grid (row first or column first);

– Random position allocators: allocate random positions within a selected form
(rectangle, circle, …).

> Mobility models specify how nodes will move during the simulation:
– Constant: position, velocity or acceleration;

– Waypoint: specify the location for a given time (time-position pairs);

– Trace-file based: parse files and convert into ns-3 mobility events, support
mobility tools such as SUMO, BonnMotion (using NS2 format) , TraNS

26

Propagation

> Propagation module defines:
– Propagation loss models:

Calculate the Rx signal power considering the Tx signal power and the
respective Rx and Tx antennas positions.

– Propagation delay models:
Calculate the time for signals to travel from the TX antennas to RX
antennas.

> Propagation delay models almost always set to:
– ConstantSpeedPropagationDelayModel: In this model, the signal

travels with constant speed (defaulting to speed of light in vacuum)

27

Propagation (cont.)

> Propagation loss models:
– Many propagation loss models are implemented:

üAbstract propagation loss models:
FixedRss, Range, Random, Matrix, …

üDeterministic path loss models:
Friis, LogDistance, ThreeLogDistance, TwoRayGround, …

üStochastic fading models:
Nakagami, Jakes, …

28

Propagation (cont.)

– A propagation loss model can be “chained” to another
one, making a list. The final Rx power takes into account all
the chained models.
Example: path loss model + shadowing model + fading
model

Figure source: Unknown

29

Wifi channels

> Two options are supported:
1. YansWifiChannel (simple single-band model)

– Use if there is no frequency-selective fading model, and if there is no
interference from foreign sources

– Default YansWifiChannelHelper will add a
“LogDistancePropagationLossModel” with path loss exponent value
of 3

2. SpectrumChannel (fine-grained band decomposition)
– Use if more detailed frequency selective models are needed, or in a

mixed-signal environment
– Default SpectrumWifiChannelHelper wil add a

“FriisSpectrumPropagationLossModel” (power falls as square of
distance)

30

SpectrumChannel illustration

> Figure source: ns-3 Model Library documentation

31

(Demo) wifi-simple-infra.cc

> wifi-simple-infra.cc uses a special ‘FixedRss’ propagation loss
model that enforces that the received signal strength (RSS) is
a configured value

> Packet delivery is governed by a preamble detection model
and a Wi-Fi error model

APSTA frames

Received with a
fixed RSSReceived with a

fixed RSS

32

Signal strength and Wi-Fi

> dBm is reference to
decibels over 1 mW

> 0 dBm = 1 mW
> +/- 3 dB = */÷ a factor of

2 on a linear scale
> +/- 10 dB = */÷ a factor

of 10 on a linear scale

-101 dBm: Thermal noise floor
for 20 MHz at room temp.

-90 dBm: Minimal received
power level in typical cards

-82 dBm: Required “Preamble
Detection” threshold

-62 dBm: Required “Energy
Detection” threshold

16 dBm: Maximum Wi-Fi transmit
power at 5 GHz

-94 dBm: Noise power including
default 7 dB WifiPhy noise figure

33

Signal to noise ratio

> (Signal + gain) power/(Noise + interference) power
> Typically expressed in decibels (dB)
> 0 dB -> signal power equals the noise power (ratio of 1)
> Different modulations require different levels of SNR to

decode successfully
> Gains (e.g. directional antennas, amplifiers) can contribute to

the numerator
> Propagation losses reduce the signal power at the receiver
> Thermal noise and noise figure contribute to the denominator

34

Interference handling and error models

> Interference (if any) is handled by adding the interfering
signal’s power to the noise power

> Figure source: ns-3 Model Library documentation

35

Error models

> DSSS error models are derived analytically

– See: https://www.nsnam.org/~pei/80211b.pdf

> OFDM error models are derived from MATLAB(TM) Wireless LAN

System Toolbox

– See: https://depts.washington.edu/funlab/wp-

content/uploads/2017/05/Technical-report-on-validation-of-error-

models-for-802.11n.pdf

> Perror (probability of packet error)

= 1 - (Psuccess1)(Psuccess2)(Psuccess3)... (for all chunks)

> Psuccess (N-bit chunk at given BER)

= 1 - (1 - BER)^N

https://www.nsnam.org/~pei/80211b.pdf
https://depts.washington.edu/funlab/wp-content/uploads/2017/05/Technical-report-on-validation-of-error-models-for-802.11n.pdf

36

Example PER curves

> Figure from ‘examples/wireless/wifi-dsss-validation.cc’
$./ns3 run wifi-dsss-validation
$ gnuplot frame-success-rate-dsss.plt

37

Wi-Fi evolution

802.11

Rates

1,2Mbps

Freq.

2.4 GHz

Modulation

DSSS

Other

802.11b
1,2,5.5,11
Mbps

2.4 GHz DSSS/CCK

802.11a 6..54Mbps 5 GHz OFDM

22 MHz overlapping channels

22 MHz overlapping channels

20 MHz channels

802.11g 1..54Mbps 2.4/5GHz OFDM in 5 GHz, DSSS/CCK in 2.4 GHz

802.11n 6..600Mbps 2.4/5GHz OFDM MIMO, WMM, 20/40 MHz

802.11ac up to 7Gbps 5 GHz OFDM beamforming, DL MU-MIMO
20/40/80/160 MHz

802.11ax up to 9.6Gbps 2.4/5/6
GHz

OFDM/
OFDMA

DL/UL MU-MIMO,
spatial reuse, TWT

802.11be up to 40Gbps 2.4/5/6
GHz

OFDM/
OFDMA

320MHz, AP coordination,
TSN, MLO, ...

38

Preamble detection and frame capture models

> In practice, a WiFi frame is first detected (and synchronized)
via a PLCP preamble field

Legacy preambles HT/VHT/HE preambles Data

Preambles Data

HT/VHT/HE preambles DataL-STF L-LTF L-SIG

39

Preamble detection and frame capture models

> A ‘ThresholdPreambleDetectionModel’ is configured by
default by the Wi-Fi helpers
– ”Threshold” attribute: default 4 dB
– “MinimumRssi” attribute: default -82 dBm

> A ‘SimpleFrameCaptureModel’ is available but must be
added (WifiHelper::SetFrameCaptureModel())
– Only enabled for YansWifiPhyHelper
– “Window” attribute: default 16us
– “Margin” attribute: default 5 dB

40

Throughput vs distance for 802.11n modulation

./ns3 run ‘wifi-80211n-mimo --preambleDetection=0’

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Distance (Meters)

HtMcs0
HtMcs1
HtMcs2
HtMcs3
HtMcs4
HtMcs5
HtMcs6
HtMcs7
HtMcs8
HtMcs9

HtMcs10
HtMcs11
HtMcs12
HtMcs13
HtMcs14
HtMcs15

HtMcs16
HtMcs17
HtMcs18
HtMcs19
HtMcs20
HtMcs21
HtMcs22
HtMcs23
HtMcs24
HtMcs25
HtMcs26
HtMcs27
HtMcs28
HtMcs29
HtMcs30
HtMcs31

41

Throughput vs distance for 802.11n modulation

./ns3 run ‘wifi-80211n-mimo --preambleDetection=1’

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (M

bi
t/s

)

Distance (Meters)

HtMcs0
HtMcs1
HtMcs2
HtMcs3
HtMcs4
HtMcs5
HtMcs6
HtMcs7
HtMcs8
HtMcs9

HtMcs10
HtMcs11
HtMcs12
HtMcs13
HtMcs14
HtMcs15

HtMcs16
HtMcs17
HtMcs18
HtMcs19
HtMcs20
HtMcs21
HtMcs22
HtMcs23
HtMcs24
HtMcs25
HtMcs26
HtMcs27
HtMcs28
HtMcs29
HtMcs30
HtMcs31

42

Bianchi analysis/validation

> Analytical work by Bianchi [*] bounded the performance of
the Wi-Fi DCF under saturating traffic

> ns-3 simulations (src/wifi/examples/wifi-bianchi.cc) have
been used to validate the simulator against this analysis, for
many versions of the Wi-Fi standard
– accounting for differences in overhead and operation

[*] G. Bianchi, "Performance analysis of the IEEE 802.11 distributed
coordination function," in IEEE Journal on Selected Areas in
Communications, vol. 18, no. 3, pp. 535-547, March 2000

43

Example Bianchi plot

> Default results for 802.11a, 5 to 50 nodes, adhoc network
> ./ns3 run ‘wifi-bianchi’

 23

 24

 25

 26

 27

 28

 29

 30

 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (M

bp
s)

Number of competing stations

Frame size 1500 bytes

ns-3
Bianchi

44

ConstantRateWifiManager

> Many ns-3 programs disable dynamic rate control and provide
specific rates for both the data and control/management
frames

> Sample code is shown below:

45

Ideal rate control

> ns-3 contains an idealized dynamic rate control manager
(IdealWifiManager) that adjusts the sending rate based on
the last SNR received on the remote STA
– The sender has access to the receiver’s statistics
– The highest throughput MCS that is supported by the provided SNR is

selected
– A configurable BER threshold (default 1e-6) is used for deciding

whether an MCS (SNR) is viable

46

Minstrel rate control

> Overall philosophy is that it is hard to pick a rate based on
available SNR figures from Linux drivers, and instead a better
approach is to search for good rates via trial-and-error

> Minstrel dedicates 10% of its packets to probe for other rates
that might offer an improved performance
– called ”Lookaround” rates
– makes use of an exponentially weighted moving average (EWMA) on

packet success statistics
– Details are available in ns-3, or Yin et al, “Rate control in the

mac80211 framework: Overview, evaluation and improvements,”
Computer Networks 81, 2015.

> ns-3 contains MinstrelWifiManager for legacy 802.11
standards, and MinstrelHtWifiManager for 802.11n/ac

47

Example Minstrel plot

> Compare short and long guard interval performance for
MinstrelHt at 802.11n-5GHz, 20 MHz channel, 1 stream

./ns3 run 'wifi-manager-example --standard=802.11n-5GHz --
serverShortGuardInterval=800 --clientShortGuardInterval=800 --
wifiManager=MinstrelHt'

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35

Ra
te

 (M
b/

s)

SNR (dB)

Results for 802.11n-5GHz with MinstrelHt
server: width=20MHz GI=400ns nss=1
client: width=20MHz GI=400ns nss=1

802.11n-5GHz-rate selected
802.11n-5GHz-observed

400ns 800ns

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35

Ra
te

 (M
b/

s)

SNR (dB)

Results for 802.11n-5GHz with MinstrelHt
server: width=20MHz GI=800ns nss=1
client: width=20MHz GI=800ns nss=1

802.11n-5GHz-rate selected
802.11n-5GHz-observed

48

Example Ideal plot

> 802.11ax in 6GHz with IdealWifiManager
./ns3 run ’wifi-manager-example --standard=802.11ax-6GHz’

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60

Ra
te

 (M
b/

s)

SNR (dB)

Results for 802.11ax-6GHz with Ideal
server: width=80MHz GI=800ns nss=1
client: width=80MHz GI=800ns nss=1

802.11ax-6GHz-rate selected
802.11ax-6GHz-observed

49

Wi-Fi 6 (802.11ax) support

> 11ax frame formats
> OBSS PD spatial reuse for dense networks
> DL OFDMA and UL OFDMA (including support for the MU

EDCA Parameter Set)
> Multi-user management frames (e.g. MU-BAR)
> Round-robin multi-user scheduler

50

Upcoming Wi-Fi extensions

Initial Wi-Fi 7 (802.11be) components are under development by
Stefano Avallone and Sebastien Deronne
> New frame formats, support for new modulation types, wider

channels
> Multi-link operation (MLO)
> Multi-AP coordination
Finish integration of new fast fading MIMO error models

– https://www.nsnam.org/research/wns3/wns3-2021/tutorials/

Integrate 802.11ad (WiGig) extensions
– https://gitlab.com/sderonne/ns-3-dev/-/tree/wigig_module

https://www.nsnam.org/research/wns3/wns3-2021/tutorials/
https://gitlab.com/sderonne/ns-3-dev/-/tree/wigig_module

51

Examples to review

> wifi-simple-infra.cc
> wifi-80211n-mimo.cc
> wifi-hidden-terminal.cc
> wifi-manager-example.cc
> wifi-spatial-reuse.cc
> wireless-animation.cc (netanim)

52

References

> General: Eldad Perahia and Robert Stacey, “Next Generation
Wireless LANs,” Second Edition, Cambridge University Press,
2013

> Standards documents (IEEE 802.11-2016, IEEE 802.11ax-2021)
> ns-3 specific:

– Lacage, Henderson,"Yet another network simulator." Proceeding from
the 2006 workshop on ns-2: the IP network simulator. 2006.

– Lanante Jr., Roy, Carpenter, Deronne, Improved Abstraction for Clear
Channel Assessment in ns-3 802.11 WLAN Model, WNS3 2019.

– Avallone, Imputato, Redieteab, Ghosh and Roy, "Will OFDMA Improve
the Performance of 802.11 Wifi Networks?," in IEEE Wireless
Communications, vol. 28, no. 3, pp. 100-107, June 2021.

– Magrin, Avallone, Roy, and Zorzi, Validation of the ns-3 802.11ax
OFDMA implementation, WNS3 2021.

Conduct Research with ns-3 Wi-Fi models

How to use ns-3 Wi-Fi models to conduct your own research?

• Phase 1: Validate the modules in ns-3
§ Start with the existing examples
§ System level validation
§ Compare with well known theoretical model/other simulation tools

• Phase 2: Build new scenarios and explore with different
parameters
§ Investigate the impact on different parameters: power, moving speed..
§ Build more complex scenarios : single cell->multi cells
§ Evaluate the performance and verify the guess

• Phase 3: Build and test new algorithms
§ Machine learning algorithms in wireless communication
§ Optimization approaches
§ New modules and new features

> Validation Examples

Phase 1: Validation work for Wi-Fi modules in ns-3

Validate the development of ns-3 Wi-Fi module against the well-known analytical model for
different network setups.

• DCF validation for different Wi-Fi standards: 802.11 a/b/g/ax
• https://gitlab.com/nsnam/ns-3-dev/-/blob/master/src/wifi/examples/wifi-bianchi.cc

• 802.11ax OFDMA validation [1]:
• https://github.com/signetlabdei/ofdma-validation

[1] Davide Magrin, Stefano Avallone, Sumit Roy, and Michele Zorzi. 2021. Validation of the ns-3 802.11ax OFDMA
implementation. In Proceedings of the Workshop on ns-3 (WNS3 '21). Association for Computing Machinery, New
York, NY, USA, 1–8. DOI:https://doi.org/10.1145/3460797.3460798

https://gitlab.com/nsnam/ns-3-dev/-/blob/master/src/wifi/examples/wifi-bianchi.cc
https://github.com/signetlabdei/ofdma-validation

> Basic DCF validation recap

Phase 1: Validate the modules in ns-3

• Simulation setup:
• Infrastructure mode: One AP and multiple stations
• Traffic: Uplink traffic only.
• Stations locate at the same distance (close) to the AP
• Transmission with same power and MCS
• Saturation mode

• Key assumptions for the analytical model:
• No PHY errors, so packet losses only caused by the collision
• Stations are all the same

• AP and stations may run on different powers
• Increase distances, PHY error may also occur and change the backoff window procedure.

> 6 GHz Power Role and Unequal Power Setup [2]

Phase 2: Build new scenarios and explore with different
parameters

• U.S Federal Communications Commission (FCC) has adopted new rules to open the 6 GHz bands
for unlicensed access

• The new ruling limits operation by a Power Spectral Density (PSD) limit in 6 GHz bands that differs
from the total average power independent of the channel bandwidth in 5 GHz bands.

• Unequal power of the Access Points (AP) and stations (STA) also impact the system performance
in wireless local area networks (WLANs).

[2] Hao Yin, Sumit Roy, and Sian Jin. 2022. IEEE WLANs in 5 vs 6 GHz: A Comparative Study. To be published in the Workshop on ns-3 (WNS3 ‘22).

> 6 GHz Power Rule and Unequal Power Setup

Phase 2: Build new scenarios and explore with different
parameters

• How can we build the new scenario to test these two setups? (Demo and codes)
• Downlink setups
• Power rules

> 6 GHz Power Rule and Unequal Power Setup

Phase 2: Build new scenarios and explore with different
parameters

• 6 GHz power rule results

- As the distance increases, the received power and SNR decreases, the packet error rate increases,
and the aggregated throughput drops.

- As the channel bandwidth increases, the transmission range of the 5 GHz band decreases while
the transmission range in the 6 GHz band remains the same

Codes: https://github.com/Mauriyin/ns3

20 MHz 40 MHz 80 MHz

https://github.com/Mauriyin/ns3

> 6 GHz Power Rule and Unequal Power Setup

Phase 2: Build new scenarios and explore with different
parameters

• Unequal Power results

• 1st Drop: STA PER increases. STA power decreases to margin, and the STA has some packets
successfully trasmitted but not to 0 (still 5 nodes, backoff window [Cwmin, CWmax]);

• Increase: All the STAs’ tpt drops to 0 (backoff window Cwmax, lower collision probability),
only AP sending packets successfully

• 2nd Drop: AP power decreases to margin, AP PER increases

> Multi-BSS Setup [3]

Phase 2: Build new scenarios and explore with different
parameters

2 Overlapping BSS:
• ALL STAs are in the same position for each BSS
• CCA: -82 dBm, TX power: 20 dBm
• Log distance path loss (PL) model -> PL is a function of distance: PL(dis)
• Change d and r to simulate different cases.
• Uplink Only

AP1 AP2

Axis:
AP1 (0, 0) AP2 (d, 0)
STA1 (0, r) STA2 (d, r)

SNIR =
!"#

(!%&'()*+,)

./0 = .20 − .4 5
.*6 = .20 − .4(57 + 97)

SINR vs PER
Conditions that 2 STAs can transmit at the same time:
• 2 STAs are in different BSS
• SINR > Threshold(MCS), for example, we need around 5 dB SNIR for MCS 0

[3] R. Kajihara, H. Wenkai, L. Lanante, M. Kurosaki and H. Ochi, "Performance Analysis Model of IEEE 802.11 CSMA/CA for Multi-
BSS Environment," 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020,
pp. 1-7, doi: 10.1109/PIMRC48278.2020.9217235.

> Multi-BSS Setup

Phase 2: Build new scenarios and explore with different
parameters

Case 1: Equivalent case:
• Setup: r = 8m, d = 5m

§ Every node is in the carrier sensing range (can sense each other)

§ SINR = 2 dB -> No simultaneous transmission for ALL MCS

§ Expectation: 2 BSS is equivalent to one larger cell

• Results:

Total 50 STAs

Parameters Value

!"# -61.6 dBm

!$% -64.6 dBm

Noise -128 dBm

SINR 2 dB

• 2 BSS is equivalent to one larger cell

• All the results are validated against

the Bianchi model

Codes: https://gitlab.com/haoyinyh/ns-3-dev/-/tree/multibss

https://gitlab.com/haoyinyh/ns-3-dev/-/tree/multibss

> Multi-BSS Setup

Phase 2: Build new scenarios and explore with different
parameters

Case 2: Simultaneous transmission
• Setup: r = 10m, d = 20m

§ Every node is in the carrier sensing range (can sense each other)
§ SINR = 12 dB -> Can support simultaneous transmission at MCS 0/1/2
§ Expectation: 2 BSS has larger throughput in MCS 0/1/2 than one large cell

• Results:

Total 50 STAs

Parameters Value

!"# -65 dBm

!$% -77.2 dBm

Noise -128 dBm

SINR 12 dB

• Simultaneous transmission happens
when MCS < 3

• The multi-BSS throughput is larger when
MCS < 3

• Large single BSS throughput is also
validated against the Bianchi model
(similar with case 1)

> Multi-BSS Setup

Phase 2: Build new scenarios and explore with different
parameters

Case 3: Simultaneous transmission
• Setup: r = 3m, d = 20m

• Every node is in the carrier sensing range (can sense each other)
§ SINR = 28.9 dB -> Can support simultaneous transmission at all MCSs
§ Expectation: 2 BSS has larger throughput in all MCSs than one large cell

• Results:

Total 50 STAs

Parameters Value

!"# -46.7 dBm
!$% -75 dBm

Noise -128 dBm
SINR 28.9 dB

• Simultaneous transmission happens
for all MCSs

• The multi-BSS throughput is larger
• Large single BSS throughput is also

validated against the Bianchi model
(similar with case 1)

> Wi-Fi Rate Control Algorithms [4]

Phase 3: Build and test new algorithms

[4] A. Krotov, A. Kiryanov and E. Khorov, "Rate Control With Spatial Reuse for Wi-Fi 6 Dense Deployments," in
IEEE Access, vol. 8, pp. 168898-168909, 2020, doi: 10.1109/ACCESS.2020.3023552.

- TS: MAB algorithm, using binomial distribution to approximate the success
probability and then select the MCS (arm). Using Thompson sampling (TS)
approach to calculate reward.
- PF: Estimate the channel SINR, then using TS to approach to approximate the
SINR distribution, and then select the MCS based on the SINR.
- OBSS PD: Using OBSS PD to enable spatial reuse setup. The same way to
calculate the OBSS PD: Threshold = Average RSSI − Margin (Margin is a positive
value that considers channel quality fluctuations).

Benefits from RL (reinforcement learning):
- Explore the optimal way to search the (sub-)optimal setup <-> randomly

search in traditional ways .
- Learn from the environment -> ‘remember’ similar situations.
- Capable for the optimization in large and complex scenario.

Deep RL? MAB?

> Simulation Scenario

Phase 3: Build and test new algorithms

• Created by modifying the file “ examples/tutorials/third.cc” in ns-3.

• The topology contains 10 wired LAN nodes connected to each other and
one of the nodes is connected to the stationary Access Point(AP) of the
Wireless Network using a point to point link with 50Mbps bandwidth
and 10ms delay.

• Reference code:
https://github.com/DodiyaParth/802.11ac_compatible_RAAs_Performa
nce_Analysis_in_NS3

Simulation Scenario [3]

[5] Huang, Tingpei, et al. "A comparative simulation study of rate adaptation algorithms in wireless LANs." International Journal of
Sensor Networks 14.1 (2013): 9-21.

https://github.com/DodiyaParth/802.11ac_compatible_RAAs_Performance_Analysis_in_NS3

> Simulation

Phase 3: Build and test new algorithms

• Calculate the throughput every second with different

rate control algorithms.

• Change the total node numbers and simulation

duration to compare the results.

Error Rate Model NistErrorRateModel

Channel Delay Model

ConstantSpeedPropagationDelay

Model

Channel Loss Model

LogDistancePropagationLossMode l

MAC(Station/AP) Type Sta WifiMac/ ApWifiMac

Application Data Rate 1 Mbps

Packet Size 1024 bytes

Mobility Model

RandomDirectional2dMobilityMo del

Mobility Speed

Random Variable : U(15.0 mps,

20.0 mps)

Simulation Topology of

Wifi nodes

Grid, rectangle range: (-100m,

100m, -100m, 100m)
Under same scenario, how’s the performance of

different algorithms.

Codes: https://github.com/hust-diangroup/ns3-ai

https://github.com/hust-diangroup/ns3-ai

Thank you!

